Startseite Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2

  • Chendrayan Dineshkumar , Velusamy Vijayakumar ORCID logo EMAIL logo , Ramalingam Udhayakumar ORCID logo , Anurag Shukla und Kottakkaran Sooppy Nisar
Veröffentlicht/Copyright: 6. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main motivation of our conversation is the existence and approximate controllability for fractional stochastic Volterra–Fredholm integro-differential systems having order 1 < r < 2. The primary outcomes are obtained by applying concepts and ideas from fractional calculus, multivalued maps, the theory of cosine family, Martelli and Dhage, and Leray–Schauder fixed point techniques. We begin by emphasizing the existence, and then demonstrate the approximate controllability of the considered system. Additionally, we determine the approximate controllability outcomes for the system with infinite delay. At last, an application is established for drawing the theoretical conclusions of primary outcomes.

2010 Subject Classification: 26A33; 34A08; 34K30; 47D09; 45D05; 93E03

Corresponding author: Velusamy Vijayakumar, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: There are no funders to report for this submission.

  3. Conflict of interest statement: This work does not have any conflicts of interest.

  4. Data availability statement: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006.Suche in Google Scholar

[2] I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Method of Their Solution and Some of Their Applications, San Diego, CA, Academic Press, 1999.Suche in Google Scholar

[3] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, New York, Elsevier, 2015.10.1016/B978-0-12-804277-9.50002-XSuche in Google Scholar

[4] M. Abouagwa, L. S. Aljoufi, R. A. R. Bantan, A. D. Khalaf, and M. Elgarhy, “Mixed neutral Caputo fractional stochastic evolution equations with infinite delay: existence, Uniqueness and Averaging Principle,” Fractal Fractional, vol. 6, no. 2, p. 105, 2022. https://doi.org/10.3390/fractalfract6020105.Suche in Google Scholar

[5] M. Abouagwa, R. A. R. Bantan, W. Almutiry, A. D. Khalaf, and M. Elgarhy, “Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay,” Fractal Fractional, vol. 5, p. 239, 2021. https://doi.org/10.3390/fractalfract5040239.Suche in Google Scholar

[6] R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,” Acta Appl. Math., vol. 109, pp. 973–1033, 2010. https://doi.org/10.1007/s10440-008-9356-6.Suche in Google Scholar

[7] A. D. Khalaf, T. Saeed, R. Abu-Shanab, W. Almutiry, and M. Abouagwa, “Estimating drift parameters in a sub-fractional Vasicek-type process,” Entropy, vol. 24, no. 5, p. 594, 2022. https://doi.org/10.3390/e24050594.Suche in Google Scholar PubMed PubMed Central

[8] G. M. Mophou and G. M. N’Guerekata, “Existence of mild solution for some fractional differential equations with nonlocal conditions,” Semigroup Forum, vol. 79, no. 2, pp. 322–335, 2009.10.1007/s00233-008-9117-xSuche in Google Scholar

[9] M. Kisielewicz, “Stochastic differential inclusions and applications,” in Springer Optimization and Its Applications, New York, Springer, 2013, p. 80.10.1007/978-1-4614-6756-4Suche in Google Scholar

[10] N. I. Mahmudov, “Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces,” SIAM J. Control Optim., vol. 42, pp. 1604–1622, 2003. https://doi.org/10.1137/s0363012901391688.Suche in Google Scholar

[11] N. I. Mahmudov and A. Denker, “On controllability of linear stochastic systems,” Int. J. Control, vol. 73, pp. 144–151, 2000. https://doi.org/10.1080/002071700219849.Suche in Google Scholar

[12] P. Balasubramaniam, S. K. Ntouyas, and D. Vinayagam, “Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space,” J. Math. Anal. Appl., vol. 305, no. 2, pp. 438–451, 2015. https://doi.org/10.1016/j.jmaa.2004.10.063.Suche in Google Scholar

[13] Y. Li, “Existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay,” Int. J. Math., Comput., Phys. Quant. Eng., vol. 8, pp. 1123–1129, 2014.Suche in Google Scholar

[14] B. C. Dhage, “Multi-valued mappings and fixed points II,” Tamkang J. Math., vol. 37, pp. 27–46, 2006. https://doi.org/10.5556/j.tkjm.37.2006.177.Suche in Google Scholar

[15] Y. K. Chang, “Controllability of impulsive functional differential systems with infinite delay in Banach spaces,” Chaos, Solit. Fractals, vol. 33, pp. 1601–1609, 2007. https://doi.org/10.1016/j.chaos.2006.03.006.Suche in Google Scholar

[16] C. Dineshkumar and R. Udhayakumar, “Results on approximate controllability of nondensely defined fractional neutral stochastic differential systems,” Numer. Methods Part. Differ. Equ., vol. 38, no. 4, pp. 733–759, 2022. https://doi.org/10.1002/num.22687.Suche in Google Scholar

[17] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, and V. Vijayakumar, “A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions,” Asian J. Control, vol. 24, no. 5, pp. 2378–2394, 2022. https://doi.org/10.1002/asjc.2650.Suche in Google Scholar

[18] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla, and K. S. Nisar, “A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r ∈ (1, 2) with delay,” Chaos, Solit. Fractals, vol. 153, p. 111565, 2021. https://doi.org/10.1016/j.chaos.2021.111565.Suche in Google Scholar

[19] Y. Ren, L. Hu, and R. Sakthivel, “Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay,” J. Comput. Appl. Math., vol. 235, pp. 2603–2614, 2011. https://doi.org/10.1016/j.cam.2010.10.051.Suche in Google Scholar

[20] J. Wang and Y. Zhou, “Existence and Controllability results for fractional semilinear differential inclusions,” Nonlinear Anal. R. World Appl., vol. 12, pp. 3642–3653, 2011. https://doi.org/10.1016/j.nonrwa.2011.06.021.Suche in Google Scholar

[21] C. Dineshkumar and R. Udhayakumar, “Results on approximate controllability of fractional stochastic Sobolev-type Volterra-Fredholm integro-differential equation of order 1 < r < 2,” Math. Methods Appl. Sci., vol. 45, no. 11, pp. 6691–6704, 2022. https://doi.org/10.1002/mma.8200.Suche in Google Scholar

[22] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, and V. Vijayakumar, “New discussion about the approximate controllability of fractional stochastic differential inclusions with order 1 < r < 2,” Asian J. Control, vol. 24, no. 5, pp. 2519–2533, 2022. https://doi.org/10.1002/asjc.2663.Suche in Google Scholar

[23] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, and A. Shukla, “A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay,” Chaos, Solit. Fractals, vol. 157, p. 111916, 2022. https://doi.org/10.1016/j.chaos.2022.111916.Suche in Google Scholar

[24] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A. H. Abdel-Aty, M. Mahmoud, and E. E. Mahmoud, “A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality,” Results Phys., vol. 38, p. 105647, 2022. https://doi.org/10.1016/j.rinp.2022.105647.Suche in Google Scholar

[25] K. Kavitha, K. S. Nisar, A. Shukla, V. Vijayakumar, and S. Rezapour, “A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems,” Adv. Differ. Equ., vol. 2021, no. 1, pp. 1–18, 2021. https://doi.org/10.1186/s13662-021-03624-1.Suche in Google Scholar

[26] A. D. Khalaf, M. Abouagwa, and X. Wang, “Periodic averaging method for impulsive stochastic dynamical systems driven by fractional Brownian motion under non-Lipschitz condition,” Adv. Differ. Equ., vol. 2019, pp. 1–15, 2019. https://doi.org/10.1186/s13662-019-2466-9.Suche in Google Scholar

[27] Y. K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, and K. S. Nisar, “Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions,” Ain Shams Eng. J., pp. 1–13, 2022. https://doi.org/10.1016/j.asej.2022.101882.Suche in Google Scholar

[28] T. Sathiyaraj, J. Wang, and P. Balasubramaniam, “Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems,” Appl. Math. Optim., vol. 84, pp. 2527–2554, 2021. https://doi.org/10.1007/s00245-020-09716-w.Suche in Google Scholar

[29] T. Sathiyaraj, M. Feckan, and J. R. Wang, “Null controllability results for stochastic delay systems with delayed perturbation of matrices,” Chaos, Solit. Fractals, vol. 138, p. 109927, 2020. https://doi.org/10.1016/j.chaos.2020.109927.Suche in Google Scholar

[30] T. Sathiyaraj, J. Wang, and D. O’Regan, “Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution,” Proc. Math. Roy. Soc. Edinb., vol. 151, no. 1, pp. 217–239, 2021. https://doi.org/10.1017/prm.2020.11.Suche in Google Scholar

[31] T. Sathiyaraj and P. Balasubramaniam, “Controllability of Hilfer fractional stochastic system with multiple delays and Poisson jumps,” Eur. Phys. J. Spec. Top., vol. 228, pp. 245–260, 2019. https://doi.org/10.1140/epjst/e2019-800096-x.Suche in Google Scholar

[32] T. Sathiyaraj and P. Balasubramaniam, “Controllability of fractional order stochastic differential inclusions with fractional Brownian motion in finite dimensional space,” IEEE/CAA J. Autom. Sin., vol. 3, no. 4, pp. 400–410, 2016.10.1109/JAS.2016.7510085Suche in Google Scholar

[33] T. Sathiyaraj and P. Balasubramaniam, “Controllability of fractional neutral stochastic integrodifferential inclusions of order p ∈ (0, 1], q ∈ (1, 2] with fractional Brownian motion,” Eur. Phys. J. Spec. Top., vol. 131, no. 357, pp. 1–24, 2016. https://doi.org/10.1140/epjp/i2016-16357-2.Suche in Google Scholar

[34] A. Shukla, N. Sukavanam, and D. N. Pandey, “Approximate controllability of semilinear stochastic control system with nonlocal conditions,” Nonlinear Dynam. Syst. Theor., vol. 15, no. 3, pp. 321–333, 2015.Suche in Google Scholar

[35] A. Shukla, V. Vijayakumar, and K. S. Nisar, “A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r ∈ (1, 2),” Chaos, Solit. Fractals, vol. 154, p. 111615, 2022. https://doi.org/10.1016/j.chaos.2021.111615.Suche in Google Scholar

[36] A. Shukla, N. Sukavanam, and D. N. Pandey, “Complete controllability of semilinear stochastic systems with delay in both state and control,” Math. Rep., vol. 18, pp. 247–259, 2016.10.1093/imamci/dnw059Suche in Google Scholar

[37] V. Vijayakumar, S. K. Panda, K. S. Nisar, and H. M. Baskonus, “Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay,” Numer. Methods Part. Differ. Equ., vol. 37, no. 2, pp. 1200–1221, 2020. https://doi.org/10.1002/num.22573.Suche in Google Scholar

[38] V. Vijayakumar, C. Ravichandran, and R. Murugesu, “Nonlocal controllability of mixed Volterra-Fredholm type fractional semilinear integro-differential inclusions in Banach spaces,” Dyn. Continuous Discrete Impuls. Syst., vol. 20, nos. 4–5b, pp. 485–502, 2013.Suche in Google Scholar

[39] V. Vijayakumar, C. Ravichandran, K. S. Nisar, and K. D. Kucche, “New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order 1 < r < 2,” Numer. Methods Part. Differ. Equ., pp. 1–20, 2021. https://doi.org/10.1002/num.22772.Suche in Google Scholar

[40] M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, and H. M. Baskonus, “On the approximate controllability results for fractional integrodifferential systems of order 1 < r < 2 with sectorial operators,” J. Comput. Appl. Math., vol. 415, p. 114492, 2022. https://doi.org/10.1016/j.cam.2022.114492.Suche in Google Scholar

[41] M. Mohan Raja and V. Vijayakumar, “New results concerning to approximate controllability of fractional integro-differential evolution equations of order 1 < r < 2,” Numer. Methods Part. Differ. Equ., vol. 38, no. 3, pp. 509–524, 2022.Suche in Google Scholar

[42] M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, and K. Kaliraj, “Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r ∈ (1, 2),” Optim. Control Appl. Methods, vol. 43, no. 4, pp. 996–1019, 2022. https://doi.org/10.1002/oca.2867.Suche in Google Scholar

[43] P. Muthukumar and K. Thiagu, “Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order 1 < q < 2 with infinite delay and Poisson jumps,” J. Dyn. Control Syst., vol. 23, pp. 213–235, 2017. https://doi.org/10.1007/s10883-015-9309-0.Suche in Google Scholar

[44] C. Rajivganthi, P. Muthukumar, and B. Ganesh Priya, “Approximate controllability of fractional stochastic integro-differential equations with infinite delay of order 1 < α < 2,” IMA J. Math. Control Inf., vol. 33, no. 3, pp. 685–699, 2016. https://doi.org/10.1093/imamci/dnv005.Suche in Google Scholar

[45] J. W. He, Y. Liang, B. Ahmad, and Y. Zhou, “Nonlocal fractional evolution inclusions of order α ∈ (1, 2),” Mathematics, vol. 209, no. 7, pp. 1–17, 2019. https://doi.org/10.3390/math7020209.Suche in Google Scholar

[46] Y. Zhou and J. W. He, “New results on controllability of fractional evolution systems with order α ϵ (1, 2),” Evol. Equ. Control Theor., vol. 10, no. 3, pp. 491–509, 2021. https://doi.org/10.3934/eect.2020077.Suche in Google Scholar

[47] A. Singh, A. Shukla, V. Vijayakumar, and R. Udhayakumar, “Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces,” Chaos, Solit. Fractals, vol. 150, p. 111095, 2021. https://doi.org/10.1016/j.chaos.2021.111095.Suche in Google Scholar

[48] P. Muthukumar and P. Balasubramaniam, “Approximate controllability of mixed stochastic Volterra-Fredholm type integrodifferential systems in Hilbert space,” J. Franklin Inst., vol. 348, no. 10, pp. 2911–2922, 2011. https://doi.org/10.1016/j.jfranklin.2011.10.001.Suche in Google Scholar

[49] K. Deimling, Multivalued Differential Equations, Berlin, De Gruyter, 1992.10.1515/9783110874228Suche in Google Scholar

[50] C. C. Travis and G. F. Webb, “Cosine families and abstract nonlinear second order differential equations,” Acta Math. Hung., vol. 32, pp. 75–96, 1978. https://doi.org/10.1007/bf01902205.Suche in Google Scholar

[51] M. Martelli, “A Rothe’s type theorem for noncompact acyclic-valued map,” Boll. Unione Mat. Ital., vol. 11, no. 3, pp. 70–76, 1975.Suche in Google Scholar

[52] L. Byszewski, “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,” J. Math. Anal. Appl., vol. 162, pp. 494–505, 1991. https://doi.org/10.1016/0022-247x(91)90164-u.Suche in Google Scholar

[53] L. Byszewski and H. Akca, “On a mild solution of a semilinear functional-differential evolution nonlocal problem,” J. Appl. Math. Stoch. Anal., vol. 10, no. 3, pp. 265–271, 1997. https://doi.org/10.1155/s1048953397000336.Suche in Google Scholar

[54] S. Peng, “Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation,” Stoch. Process. their Appl., vol. 118, pp. 2223–2253, 2008. https://doi.org/10.1016/j.spa.2007.10.015.Suche in Google Scholar

[55] Y. Ren, X. Jia, and R. Sakthivel, “The p-th moment stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion,” Hist. Anthropol., vol. 96, pp. 988–1003, 2017. https://doi.org/10.1080/00036811.2016.1169529.Suche in Google Scholar

[56] Y. Ren, Q. Zhou, and L. Chen, “Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay,” J. Optim. Theor. Appl., vol. 149, pp. 315–331, 2011. https://doi.org/10.1007/s10957-010-9792-0.Suche in Google Scholar

[57] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2nd ed., Birkhauser Verlag, 2011.10.1007/978-3-0348-0087-7Suche in Google Scholar

[58] J. J. Nieto, “Basic theory for nonresonance impulsive periodic problems of first order,” J. Math. Anal. Appl., vol. 205, pp. 423–433, 1997. https://doi.org/10.1006/jmaa.1997.5207.Suche in Google Scholar

[59] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, Singapore, World Scientific, 1995.10.1142/2892Suche in Google Scholar

Received: 2021-12-29
Revised: 2022-07-24
Accepted: 2022-09-18
Published Online: 2022-10-06

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Article
  3. Hybrid solitary wave solutions of the Camassa–Holm equation
  4. Numerical simulations of wave propagation in a stochastic partial differential equation model for tumor–immune interactions
  5. A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley–Torvik differential equation
  6. Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect
  7. Numerical modeling of the dam-break flood over natural rivers on movable beds
  8. A class of piecewise fractional functional differential equations with impulsive
  9. Lie symmetry analysis for two-phase flow with mass transfer
  10. Asymptotic behavior for stochastic plate equations with memory in unbounded domains
  11. Discussion on controllability of non-densely defined Hilfer fractional neutral differential equations with finite delay
  12. A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity
  13. Ground state solutions of Schrödinger system with fractional p-Laplacian
  14. Bifurcation analysis of a new stochastic traffic flow model
  15. An uncertainty measure based on Pearson correlation as well as a multiscale generalized Shannon-based entropy with financial market applications
  16. Hilfer fractional stochastic evolution equations on infinite interval
  17. Iterative learning control for conformable stochastic impulsive differential systems with randomly varying trial lengths
  18. Chebyshev wavelet-Picard technique for solving fractional nonlinear differential equations
  19. Theoretical assessment of the impact of awareness programs on cholera transmission dynamic
  20. Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
  21. Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2
  22. Shehu transform on time-fractional Schrödinger equations – an analytical approach
  23. A (2 + 1)-dimensional variable-coefficients extension of the Date–Jimbo–Kashiwara–Miwa equation: Lie symmetry analysis, optimal system and exact solutions
  24. Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0479/html?lang=de
Button zum nach oben scrollen