Startseite Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect

  • Sanaa Moussa Salman und Abdelalim A. Elsadany EMAIL logo
Veröffentlicht/Copyright: 6. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we use new methods to investigate different bifurcations of fixed points in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect. The nonstandard discretization scheme produces a discrete analog of the continuous-time toxic-phytoplankton–zooplankton model with Allee effect. The local stability for proposed system around all of its fixed points is derived. We obtain the codimension-1 conditions of various bifurcations such as period doubling and Neimark–Sacker. Moreover, the system produces codimension-2 bifurcations such as resonance 1:1, 1:2, 1:3, and 1:4. Furthermore, the system can produce very rich dynamics, such as the existence of a semi-stable limit cycle, multiple coexisting periodic orbits, and chaotic behavior. Theoretical analysis is validated by numerical methods.


Corresponding author: Abdelalim A. Elsadany, Mathematics Department, College of Science and Humanities Studies in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; and Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt, E-mail:

  1. Author contributions: Credit authorship contribution statement S. M. Salman Conceptualization, Methodology, Software, Formal analysis, Writing – original draft. A. A. Elsadany Investigation, Validation, Writing – review & editing.

  2. Research funding: This work has not been supported by any grants.

  3. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

[1] J. Chattopadhyay, R. R. Sarkar, and S. Mandal, “Toxin producing plankton may act as a biological control for planktonic blooms: a field study and mathematical modelling,” J. Theor. Biol., vol. 215, pp. 333–344, 2002.10.1006/jtbi.2001.2510Suche in Google Scholar PubMed

[2] J. Chattopadhyay, R. R. Sarkar, and A. E. Abdllaoui, “A delay differential equation model on harmful algal blooms in the presence of toxic substances,” IMA J. Appl. Math., vol. 19, pp. 137–161, 2002, https://doi.org/10.1093/imammb/19.2.137.Suche in Google Scholar

[3] B. Mukhopadhyay and R. Bhattacharyya, “Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity,” Ecol. Model., vol. 198, pp. 163–173, 2006. https://doi.org/10.1016/j.ecolmodel.2006.04.005.Suche in Google Scholar

[4] R. Pal, D. Basu, and M. Banerjee, “Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response-A mathematical study,” Biosystems, vol. 95, pp. 243–253, 2009. https://doi.org/10.1016/j.biosystems.2008.11.002.Suche in Google Scholar PubMed

[5] P. J. Franks, “Models of harmful algal blooms,” Limnol. Oceanogr., vol. 42, pp. 1273–1282, 1997. https://doi.org/10.4319/lo.1997.42.5_part_2.1273.Suche in Google Scholar

[6] A. M. Edwards and J. Brindley, “Zooplankton mortality and the dynamical behaviour of plankton population models,” Bull. Math. Biol., vol. 61, pp. 303–339, 1999. https://doi.org/10.1006/bulm.1998.0082.Suche in Google Scholar PubMed

[7] A. Huppert, R. Olinky, and L. Stone, “Bottom-up excitable models of phytoplankton blooms,” Bull. Math. Biol., vol. 66, pp. 865–878, 2004. https://doi.org/10.1016/j.bulm.2004.01.003.Suche in Google Scholar PubMed

[8] Y. Lv, Y. Pei, S. Gao, and C. Li, “Harvesting of a phytoplankton–zooplankton model,” Nonlinear Anal. R. World Appl., vol. 11, pp. 3608–3619, 2010. https://doi.org/10.1016/j.nonrwa.2010.01.007.Suche in Google Scholar

[9] A. M. Edwards and J. Brindley, “Oscillatory behaviour in a three-component plankton population model,” Dynam. Stabil. Syst., vol. 11, pp. 347–370, 1996. https://doi.org/10.1080/02681119608806231.Suche in Google Scholar

[10] S. Ruan, “Persistence and coexistence in zooplankton–phytoplankton–nutrient models with instantaneous nutrient recycling,” J. Math. Biol., vol. 31, pp. 633–654, 1993. https://doi.org/10.1007/bf00161202.Suche in Google Scholar

[11] S. J. Jang, “Dynamics of variable-yield nutrient–phytoplankton–zooplankton models with nutrient recycling and self-shading,” J. Math. Biol., vol. 40, pp. 229–250, 2000. https://doi.org/10.1007/s002850050179.Suche in Google Scholar PubMed

[12] S. Roy, S. Bhattacharya, P. Das, and J. Chattopadhyay, “Interaction among non-toxic phytoplankton, toxic phytoplankton and zooplankton: inferences from field observations,” J. Biol. Phys., vol. 33, pp. 1–17, 2007. https://doi.org/10.1007/s10867-007-9038-z.Suche in Google Scholar PubMed PubMed Central

[13] Y. Wang, H. Wang, and W. Jiang, “Hopf-transcritical bifurcation in toxic phytoplankton-zooplankton model with delay,” J. Appl. Math. Anal. Appl., vol. 415, pp. 574–594, 2014. https://doi.org/10.1016/j.jmaa.2014.01.081.Suche in Google Scholar

[14] R. Han and B. Dai, “Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton–zooplankton model with Allee effect,” Nonlinear Anal. R. World Appl., vol. 45, pp. 822–853, 2019. https://doi.org/10.1016/j.nonrwa.2018.05.018.Suche in Google Scholar

[15] H. Al-Kahby, F. Dannan, and S. Elaydi, Non-standard Discretization Methods for Some Biological Models, Singapore, World Scientific, 2000, pp. 155–180.10.1142/9789812813251_0004Suche in Google Scholar

[16] D. Sahoo, S. Mondal, and G. P. Samant, “Interaction among toxic phytoplankton with viral infection and zooplankton in presence of multiple time delays,” Int. J. Dyn. Control, vol. 9, no. 1, 2020. https://doi.org/10.1007/s40435-020-00646-7.Suche in Google Scholar

[17] J. Zhao and J. Wei, “Stability and bifurcation in a two harmful phytoplankton–zooplankton system,” Chaos Solit. Fractals, vol. 3, no. 39, pp. 1395–1409, 2009. https://doi.org/10.1016/j.chaos.2007.05.019.Suche in Google Scholar

[18] Z. Jiang, Z. Zhang, and M. Jie, “Bifurcation analysis in a delayed toxic-phytoplankton and zooplankton ecosystem with Monod–Haldane functional response,” Discrete Contin. Dyn. Syst. B, vol. 2, no. 27, pp. 691–715, 2022. https://doi.org/10.3934/dcdsb.2021061.Suche in Google Scholar

[19] A. Q. Khan and M. B. Javaid, “Discrete-time phytoplankton–zooplankton model with bifurcations and chaos,” Adv. Differ. Equ., vol. 415, 2021. https://doi.org/10.1186/s13662-021-03523-5.Suche in Google Scholar

[20] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, New York, Springer-Verlag, 1997.Suche in Google Scholar

[21] R. K. Ghaziani, W. Govaerts, and C. Sonck, “Codimension-two bifurcations of fixed points in a class of discrete prey–predator systems,” Discrete Dynam Nat. Soc., vol. 2011, pp. 1–27, 2011. https://doi.org/10.1155/2011/862494.Suche in Google Scholar

[22] R. K. Ghaziani, W. Govaerts, and C. Sonck, “Resonance and bifurcation in a discrete–time predator–prey system with Holling functional response,” Nonlinear Anal. RWA, vol. 13, pp. 1451–1465, 2012. https://doi.org/10.1016/j.nonrwa.2011.11.009.Suche in Google Scholar

[23] M. A. Abdelaziz, A. I. Ismail, F. A. Abdullah, and M. H. Mohd, “Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination,” Chaos Solit. Fractals, vol. 140, p. 110104, 2020. https://doi.org/10.1016/j.chaos.2020.110104.Suche in Google Scholar

[24] Z. Eskandari and J. Alidousti, “Stability and codimension 2 bifurcations of a discrete time SIR model,” J. Franklin Inst., vol. 357, pp. 10937–10959, 2020. https://doi.org/10.1016/j.jfranklin.2020.08.040.Suche in Google Scholar

[25] Z. Eskandari, J. Alidousti, and R. K. Ghaziani. “Codimension-One and-two bifurcations of a three-dimensional discrete Game model,” Internat. J. Bifur. Chaos, vol. 31, no. 02, p. 2150023, 2021. https://doi.org/10.1142/s0218127421500231.Suche in Google Scholar

Received: 2021-12-28
Accepted: 2022-09-18
Published Online: 2022-10-06

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Article
  3. Hybrid solitary wave solutions of the Camassa–Holm equation
  4. Numerical simulations of wave propagation in a stochastic partial differential equation model for tumor–immune interactions
  5. A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley–Torvik differential equation
  6. Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect
  7. Numerical modeling of the dam-break flood over natural rivers on movable beds
  8. A class of piecewise fractional functional differential equations with impulsive
  9. Lie symmetry analysis for two-phase flow with mass transfer
  10. Asymptotic behavior for stochastic plate equations with memory in unbounded domains
  11. Discussion on controllability of non-densely defined Hilfer fractional neutral differential equations with finite delay
  12. A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity
  13. Ground state solutions of Schrödinger system with fractional p-Laplacian
  14. Bifurcation analysis of a new stochastic traffic flow model
  15. An uncertainty measure based on Pearson correlation as well as a multiscale generalized Shannon-based entropy with financial market applications
  16. Hilfer fractional stochastic evolution equations on infinite interval
  17. Iterative learning control for conformable stochastic impulsive differential systems with randomly varying trial lengths
  18. Chebyshev wavelet-Picard technique for solving fractional nonlinear differential equations
  19. Theoretical assessment of the impact of awareness programs on cholera transmission dynamic
  20. Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
  21. Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2
  22. Shehu transform on time-fractional Schrödinger equations – an analytical approach
  23. A (2 + 1)-dimensional variable-coefficients extension of the Date–Jimbo–Kashiwara–Miwa equation: Lie symmetry analysis, optimal system and exact solutions
  24. Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0476/html
Button zum nach oben scrollen