Home Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
Article
Licensed
Unlicensed Requires Authentication

Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law

  • Mohammed A. Almalahi , Mohammed S. Abdo , Thabet Abdeljawad EMAIL logo and Ebenezer Bonyah
Published/Copyright: October 3, 2022

Abstract

In the present paper, a new fractional order predator–prey model is considered. The applied fractional operator is a generalized Atangana–Baleanu–Caputo (ABC) derivative, which does not require any restrictions on the initial conditions as in the case of classical ABC fractional derivatives. On the theoretical aspect, we prove the existence, uniqueness, and Ulam–Hyers stability results by using some fixed point theorems and nonlinear analysis techniques. The numerical aspect discusses the approximation solutions for the proposed model by applying the generalized scheme of the Adams–Bashforth technique. At the end, we explain the behavior of the solution to the studied model through graphical representations and numerical simulations.

2010 MSC Classification: 34A08; 34A12; 47H10

Corresponding author: Thabet Abdeljawad, Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia; and Department of Medical Research, China Medical University, Taichung 40402, Taiwan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] V. Volterra, Théorie mathématique de la lutte pour la vie, Paris, Gauthier-Villars, 1931.Search in Google Scholar

[2] A. J. Lotka, Elements of Physical Biology, Baltimore, Williams & Wilkins, 1925.Search in Google Scholar

[3] A. N. Kolmogoro, “Sulla theoria di Volterra della lotta per l’esistenza,” G. Ist. Ital. Attuari, vol. 7, pp. 74–80, 1936.Search in Google Scholar

[4] V. A. Kostitzin, Mathematical Biology, Bromley, Harrap, 1939.Search in Google Scholar

[5] M. Smith, Models in Ecology, Cambridge, Cambridge University Press, 1974.Search in Google Scholar

[6] J. Murray, Mathematical Biology, Berlin, Springer, 1989.10.1007/978-3-662-08539-4Search in Google Scholar

[7] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, New York, Marcel Dekker, 1980.Search in Google Scholar

[8] G. Seo and D. L. De Angelis, “A predator-prey model with a Holling type I functional response including a predator mutual interference,” J. Nonlinear Sci., vol. 21, pp. 811–833, 2011. https://doi.org/10.1007/s00332-011-9101-6.Search in Google Scholar

[9] A. P. Gutierrez, Applied Population Ecology: A Supply-Demand Approach, New York, NY, USA, John Wiley and Sons, 1996.Search in Google Scholar

[10] G. Seo and M. Kot, “A comparison of two predator-prey models with Holling’s type I functional response,” Math. Biosci., vol. 212, pp. 161–179, 2008. https://doi.org/10.1016/j.mbs.2008.01.007.Search in Google Scholar PubMed

[11] H. W. Hethcote, W. Wang, L. Han, and Z. Ma, “A predator–prey model with infected prey,” Theor. Popul. Biol., vol. 66, no. 3, pp. 259–268, 2004. https://doi.org/10.1016/j.tpb.2004.06.010.Search in Google Scholar PubMed

[12] M. Tansky, “Switching effect in prey-predator systems,” J. Theor. Biol., vol. 70, pp. 263–271, 1978.10.1016/0022-5193(78)90376-4Search in Google Scholar PubMed

[13] N. D. Kazarinoffa and P. Driessche, “A model predator-prey system with functional response,” Math. Biosci., vol. 39, pp. 125–134, 1978. https://doi.org/10.1016/0025-5564(78)90031-7.Search in Google Scholar

[14] G. W. Harrison, “Global stability of predator-prey interactions,” J. Math. Biol., vol. 8, pp. 159–171, 1979. https://doi.org/10.1007/bf00279719.Search in Google Scholar

[15] K. S. Cheng, S. B. Hsu, and S. S. Lin, “Some results on global stability of a predator-prey system, ” J. Math. Biol., vol. 12, pp. 115–126, 1981.10.1007/BF00275207Search in Google Scholar

[16] L. P. Liou and K. S. Cheng, “Global stability of a predator-prey system,” J. Math. Biol., vol. 25, pp. 65–71, 1988. https://doi.org/10.1007/bf00280173.Search in Google Scholar

[17] F. Brouer and Soudack, “Constant rate stocking of predator-prey systems,” J. Math. Biol., vol. 11, pp. 1–14, 1981.10.1007/BF00275820Search in Google Scholar

[18] S. B. Hsu, “Predator-mediated coexistence and extinction,” Math. Biosci., vol. 54, pp. 231–248, 1981. https://doi.org/10.1016/0025-5564(81)90088-2.Search in Google Scholar

[19] B. Dubey, “Modelling the depletion and conservation of resources: effects of two interacting populations,” Ecol. Model., vol. 101, pp. 123–136, 1997. https://doi.org/10.1016/s0304-3800(97)01974-1.Search in Google Scholar

[20] B. Dubey and R. K. Upadhyay, “Persistence and Extinction of one -prey and two Predators system,” Nonlinear Anal. Model Control, vol. 9, no. 4, pp. 307–329, 2004. https://doi.org/10.15388/na.2004.9.4.15147.Search in Google Scholar

[21] V. Rai and R. K. Upadhyay, “Chaotic population dynamics and biology of the top predator,” Chaos, Solit. Fractals, vol. 21, no. 5, pp. 1195–1204, 2004.10.1016/j.chaos.2003.12.065Search in Google Scholar

[22] V. Rai, M. Anand, and R. K. Upadhyay, “Trophic structure and dynamical complexity in simple ecological models,” Ecol. Complex., vol. 4, no. 4, pp. 212–222, 2007. https://doi.org/10.1016/j.ecocom.2007.06.010.Search in Google Scholar

[23] R. K. Upadhyay and R. K. Naji, “Dynamics of a three species food chain model with Crowley–Martin type functional response,” Chaos, Solit. Fractals, vol. 42, no. 3, pp. 1337–1346, 2009.10.1016/j.chaos.2009.03.020Search in Google Scholar

[24] M. F. Elettreby, “Two-prey one predator model,” Chaos, Solit. Fractals, vol. 39, pp. 2018–2027, 2009. https://doi.org/10.1016/j.chaos.2007.06.058.Search in Google Scholar

[25] F. Chen and L. Chen, “Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a constant prey refuge,” Nonlin. Anal. RWA, vol. 11, no. 1, pp. 246–252, 2010. https://doi.org/10.1016/j.nonrwa.2008.10.056.Search in Google Scholar

[26] Z. Zhang and Z. Huo, “Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms,” Nonlin. Anal. RWA, vol. 11, no. 3, pp. 1560–1571, 2010. https://doi.org/10.1016/j.nonrwa.2009.03.001.Search in Google Scholar

[27] S. Das and P. K. Gupta, “A mathematical model on fractional Lotka–Volterra equations,” J. Theor. Biol., vol. 277, no. 1, pp. 1–6, 2011. https://doi.org/10.1016/j.jtbi.2011.01.034.Search in Google Scholar PubMed

[28] S. He, K. Sun, and S. Banerjee, “Dynamical properties and complexity in fractional-order diffusionless Lorenz system,” Eur. Phys. J. Plus, vol. 131, no. 8, pp. 1–12, 2016. https://doi.org/10.1140/epjp/i2016-16254-8.Search in Google Scholar

[29] C. Ionescu, A. Lopes, D. Copot, J. T. Machado, and J. H. T. Bates, “The role of fractional calculus in modeling biological phenomena: a review,” Commun. Nonlinear Sci. Numer. Simulat., vol. 51, pp. 141–159, 2017. https://doi.org/10.1016/j.cnsns.2017.04.001.Search in Google Scholar

[30] Z. Wang, Y. Xie, J. Lu, and Y. Li, “Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition,” Appl. Math. Comput., vol. 347, pp. 360–369, 2019. https://doi.org/10.1016/j.amc.2018.11.016.Search in Google Scholar

[31] K. A. Abro and A. Atangana, “A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations,” Eur. Phys. J. Plus, vol. 135, no. 2, p. 226, 2020. https://doi.org/10.1140/epjp/s13360-020-00136-x.Search in Google Scholar

[32] M. S. Abdo, S. K. Panchal, K. Shah, and T. Abdeljawad, “Existence theory and numerical analysis of three species prey–predator model under Mittag-Leffler power law,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–16, 2020.10.1186/s13662-020-02709-7Search in Google Scholar PubMed PubMed Central

[33] M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, and A. H. Abdel-Aty, “Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India,” Results Phys., vol. 20, p. 103702, 2021. https://doi.org/10.1016/j.rinp.2020.103702.Search in Google Scholar PubMed PubMed Central

[34] S. T. Thabet, M. S. Abdo, K. Shah, and T. Abdeljawad, “Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative,” Results Phys., vol. 19, p. 103507, 2020. https://doi.org/10.1016/j.rinp.2020.103507.Search in Google Scholar PubMed PubMed Central

[35] M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, and K. Abodayeh, “Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator,” Results Phys., vol. 24, p. 104045, 2021. https://doi.org/10.1016/j.rinp.2021.104045.Search in Google Scholar

[36] M. A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative,” Alex. Eng. J., vol. 59, no. 4, pp. 2379–2389, 2020. https://doi.org/10.1016/j.aej.2020.02.033.Search in Google Scholar

[37] A. Atangana, “Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?” Chaos, Solit. Fractals, vol. 136, p. 109860, 2020. https://doi.org/10.1016/j.chaos.2020.109860.Search in Google Scholar PubMed PubMed Central

[38] S. Qureshi and A. Atangana, “Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data,” Chaos, Solit. Fractals, vol. 136, p. 109812, 2020. https://doi.org/10.1016/j.chaos.2020.109812.Search in Google Scholar

[39] A. A. Kilbas, H. M. Shrivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006.Search in Google Scholar

[40] I. Podlubny, Fractional Differential Equations, San Diego, Academic Press, 1999.Search in Google Scholar

[41] M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Prog. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2015.Search in Google Scholar

[42] A. Atangana and D. Baleanu, “New fractional derivative with non-local and non-singular kernel,” Therm. Sci., vol. 20, no. 2, pp. 757–763, 2016.10.2298/TSCI160111018ASearch in Google Scholar

[43] T. Abdeljawad, “Fractional operators with generalized Mittag-Leffler kernels and their differintegrals,” Chaos, vol. 29, p. 023102, 2019. https://doi.org/10.1063/1.5085726.Search in Google Scholar PubMed

[44] C. Dai and M. Zhao, “Mathematical and dynamic analysis of a prey–predator model in the presence of alternative prey with impulsive state feedback control,” Discrete Dynam Nat. Soc., vol. 2012, p. 724014, 2012. https://doi.org/10.1155/2012/724014.Search in Google Scholar

[45] T. Abdeljawad and D. Baleanu, “On fractional derivatives with generalized Mittag-Leffler kernels,” Adv. Differ. Eqs., vol. 2018, p. 468, 2018. https://doi.org/10.1186/s13662-018-1914-2.Search in Google Scholar

[46] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore, World Scientific, 2014.10.1142/9069Search in Google Scholar

[47] S. M. Ulam, Problems in Modern Mathematics, New York, Wiley, 1940.Search in Google Scholar

[48] S. M. Ulam, A Collection of Mathematical Problems, New York, Interscience, 1968.Search in Google Scholar

[49] M. Toufik and A. Atangana, “New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models,” Eur. Phys. J. Plus, vol. 132, p. 444, 2017. https://doi.org/10.1140/epjp/i2017-11717-0.Search in Google Scholar

Received: 2021-07-16
Accepted: 2022-09-18
Published Online: 2022-10-03

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Article
  3. Hybrid solitary wave solutions of the Camassa–Holm equation
  4. Numerical simulations of wave propagation in a stochastic partial differential equation model for tumor–immune interactions
  5. A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley–Torvik differential equation
  6. Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect
  7. Numerical modeling of the dam-break flood over natural rivers on movable beds
  8. A class of piecewise fractional functional differential equations with impulsive
  9. Lie symmetry analysis for two-phase flow with mass transfer
  10. Asymptotic behavior for stochastic plate equations with memory in unbounded domains
  11. Discussion on controllability of non-densely defined Hilfer fractional neutral differential equations with finite delay
  12. A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity
  13. Ground state solutions of Schrödinger system with fractional p-Laplacian
  14. Bifurcation analysis of a new stochastic traffic flow model
  15. An uncertainty measure based on Pearson correlation as well as a multiscale generalized Shannon-based entropy with financial market applications
  16. Hilfer fractional stochastic evolution equations on infinite interval
  17. Iterative learning control for conformable stochastic impulsive differential systems with randomly varying trial lengths
  18. Chebyshev wavelet-Picard technique for solving fractional nonlinear differential equations
  19. Theoretical assessment of the impact of awareness programs on cholera transmission dynamic
  20. Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
  21. Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2
  22. Shehu transform on time-fractional Schrödinger equations – an analytical approach
  23. A (2 + 1)-dimensional variable-coefficients extension of the Date–Jimbo–Kashiwara–Miwa equation: Lie symmetry analysis, optimal system and exact solutions
  24. Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0288/html
Scroll to top button