Startseite The modified Rusanov scheme for solving the phonon-Bose model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The modified Rusanov scheme for solving the phonon-Bose model

  • Kamel Mohamed und Mahmoud A. E. Abdelrahman EMAIL logo
Veröffentlicht/Copyright: 26. Mai 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper considers the one-dimensional model of heat conduction in solids at low temperature, the so called phonon-Bose model. The nonlinear model consists of a conservation equation for the energy density e and the heat flux Q with ∣Q∣ < e. We present a simple and accurate class of finite volume schemes for numerical simulation of heat flow in arteries. This scheme consists of predictor and corrector steps, the predictor step contains a parameter of control of the numerical diffusion of the scheme, which modulate by using limiter theory and Riemann invariant, the corrector step recovers the balance conservation equation, the scheme can compute the numerical flux corresponding the real state of solution without relying on Riemann problem solvers and it can thus be turned to order 1 in the regions where the flow has a strong variation and to order 2 in the regions where the flow is regular. The numerical test cases demonstrate high resolution of the proposed finite volume scheme (modified Rusanov) and confirm its capability to provide accurate simulations for heat flow under flow regimes with strong shocks.

Mathematics Subject Classification (2010): 35L45; 35L65; 35L67; 76P05; 76M12; 80M12

Corresponding author: Mahmoud A. E. Abdelrahman, Department of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; and Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. A. E. Abdelrahman and M. Kunik, “The ultra-relativistic Euler equations,” Math. Methods Appl. Sci., vol. 38, pp. 1247–1264, 2015. https://doi.org/10.1002/mma.3141.Suche in Google Scholar

[2] M. A. E. Abdelrahman, “Global solutions for the ultra-relativistic Euler equations,” Nonlinear Anal., vol. 155, pp. 140–162, 2017. https://doi.org/10.1016/j.na.2017.01.014.Suche in Google Scholar

[3] M. A. E. Abdelrahman, “Cone-grid scheme for solving hyperbolic systems of conservation laws and one application,” Comput. Appl. Math., vol. 37, no. 3, pp. 3503–3513, 2018. https://doi.org/10.1007/s40314-017-0527-9.Suche in Google Scholar

[4] L. Formaggia, D. Lamponi, and A. Quarteroni, “One-dimensional models for blood flow in arteries,” J. Eng. Math., vol. 47, nos. 3–4, pp. 251–276, 2003. https://doi.org/10.1023/b:engi.0000007980.01347.29.10.1023/B:ENGI.0000007980.01347.29Suche in Google Scholar

[5] L. Grinberg, E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis, “Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study,” Ann. Biomed. Eng., vol. 39, no. 1, pp. 297–309, 2010. https://doi.org/10.1007/s10439-010-0132-1.Suche in Google Scholar PubMed

[6] S. Frassu and G. Viglialoro, “Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent,” Nonlinear Anal., vol. 213, 2021, Art no. 112505. https://doi.org/10.1016/j.na.2021.112505.Suche in Google Scholar

[7] T. Li, N. Pintus, and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., vol. 70, no. 3, 2019, Art no. 86. https://doi.org/10.1007/s00033-019-1130-2.Suche in Google Scholar

[8] T. Li and G. Viglialoro, “Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime,” Differ. Integr. Equ., vol. 34, nos. 5–6, pp. 315–336, 2021.10.57262/die034-0506-315Suche in Google Scholar

[9] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 1st ed. New York, Springer, 1994.10.1007/978-1-4612-0873-0Suche in Google Scholar

[10] L. Evans, Partial differential equations, volume 19 of Graduate Studies in Mathematics, Providence, RI, American Mathematical Society, 1998.Suche in Google Scholar

[11] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Berlin, Springer, 1999.10.1007/978-3-662-03915-1Suche in Google Scholar

[12] M. A. E. Abdelrahman and M. Kunik, “A new front tracking scheme for the ultra-relativistic Euler equations,” J. Comput. Phys., vol. 275, pp. 213–235, 2014. https://doi.org/10.1016/j.jcp.2014.06.051.Suche in Google Scholar

[13] M. A. E. Abdelrahman, “Numerical investigation of the wave-front tracking algorithm for the full ultra-relativistic Euler equations,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 19, pp. 223–229, 2018. https://doi.org/10.1515/ijnsns-2017-0121.Suche in Google Scholar

[14] W. Dreyer and M. Kunik, “Initial and boundary value problems of hyperbolic heat conduction,” Continuum Mech. Therm., vol. 11, no. 4, pp. 227–245, 1999. https://doi.org/10.1007/s001610050113.Suche in Google Scholar

[15] W. Dreyer and S. Seelecke, “Entropy and causality as criteria for the existence of shock waves in low temperature heat conduction,” Continuum Mech. Therm., vol. 4, pp. 23–36, 1992. https://doi.org/10.1007/bf01126385.Suche in Google Scholar

[16] W. Dreyer and H. Struchtrup, “Heat pulse experiments revisited,” Continuum Mech. Therm., vol. 5, pp. 1–50, 1993. https://doi.org/10.1007/bf01135371.Suche in Google Scholar

[17] W. Dreyer and S. Qamar, “Kinetic flux-vector splitting schemes for the hyperbolic heat conduction,” J. Comput. Phys., vol. 198, pp. 403–423, 2004. https://doi.org/10.1016/j.jcp.2004.01.026.Suche in Google Scholar

[18] W. Dreyer, M. Herrmann, and M. Kunik, “Kinetic solutions of the Boltzmann–Peierls equation and its moment systems,” Continuum Mech. Therm., vol. 16, pp. 453–469, 2004. https://doi.org/10.1007/s00161-003-0171-z.Suche in Google Scholar

[19] T. Sanderson, C. Ume, and J. Jarzynski, “Hyperbolic heat equations in laser generated ultrasound models,” Ultrasonics, vol. 33, pp. 415–421, 1995. https://doi.org/10.1016/0041-624x(96)83515-3.Suche in Google Scholar

[20] M. Kunik, S. Qamar, and G. Warnecke, “A reduction of the Boltzmann–Peierls equation,” Int. J. Comput. Methods, vol. 2, pp. 213–229, 2005. https://doi.org/10.1142/s0219876205000430.Suche in Google Scholar

[21] C. Y. Yang, “Direct and inverse solutions of hyperbolic heat conduction problems,” J. Thermophys. Heat Tran., vol. 19, pp. 217–225, 2005. https://doi.org/10.2514/1.7410.Suche in Google Scholar

[22] A. A. Balootaki, A. Karimipour, and D. Toghraie, “Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside,” Phys. A Stat. Mech. Appl., vol. 508, pp. 681–701, 2018. https://doi.org/10.1016/j.physa.2018.05.141.Suche in Google Scholar

[23] A. Toghaniyan, M. Zarringhalam, O. A. Akbari, G. A. S. Shabani, and D. Toghraie, “Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows,” Phys. A Stat. Mech. Appl., vol. 509, no. 1, pp. 673–689, 2018. https://doi.org/10.1016/j.physa.2018.06.030.Suche in Google Scholar

[24] H. H. Afrouzi, M. Ahmadian, A. Moshfegh, D. Toghraie, and A. Javadzadegan, “Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method,” Phys. A Stat. Mech. Appl., vol. 535, p. 122486, 2019. https://doi.org/10.1016/j.physa.2019.122486.Suche in Google Scholar

[25] A. Javadzadegan, S. H. Motaharpour, A. Moshfegh, O. A. Akbari, H. H. Afrouzi, and D. Toghraie, “Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls,” Phys. A Stat. Mech. Appl., vol. 526, p. 121066, 2019. https://doi.org/10.1016/j.physa.2019.121066.Suche in Google Scholar

[26] M. Jourabian, A. A. R. Darzi, O. A. Akbari, and D. Toghraie, “The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus,” Phys. A Stat. Mech. Appl., vol. 548, p. 123887, 2020. https://doi.org/10.1016/j.physa.2019.123887.Suche in Google Scholar

[27] A. Karimipour, M. H. Esfe, M. R. Safaei, D. Toghraie, S. Jafari, and S. N. Kazi, “Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method,” Phys. A Stat. Mech. Appl., vol. 402, pp. 150–168, 2014. https://doi.org/10.1016/j.physa.2014.01.057.Suche in Google Scholar

[28] M. Nemati, A. R. S. N. Abady, D. Toghraie, and A. Karimipour, “Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows,” Phys. A Stat. Mech. Appl., vol. 489, pp. 65–77, 2018. https://doi.org/10.1016/j.physa.2017.07.013.Suche in Google Scholar

[29] M. Jourabian, A. A. R. Darzi, D. Toghraie, and O. A. Akbari, “Melting process in porous media around two hot cylinders: numerical study using the lattice Boltzmann method,” Phys. A Stat. Mech. Appl., vol. 509, pp. 316–335, 2018. https://doi.org/10.1016/j.physa.2018.06.011.Suche in Google Scholar

[30] K. Mohamed, “Simulation numérique en volume finis, de problémes d’écoulements multidimensionnels raides, par un schéma de flux á deux pas,” PhD dissertation, vol. 13, University of Paris, 2005.Suche in Google Scholar

[31] K. Mohamed, M. Seaid, and M. Zahri, “A finite volume method for scalar conservation laws with stochastic time-space dependent flux function,” J. Comput. Appl. Math., vol. 237, pp. 614–632, 2013. https://doi.org/10.1016/j.cam.2012.07.014.Suche in Google Scholar

[32] F. Benkhaldoun, K. Mohamed, and M. Seaid, “A generalized Rusanov method for Saint-Venant equations with variable horizontal density,” in FVCA international symposium, Prague, 2011, pp. 96–112.10.1007/978-3-642-20671-9_10Suche in Google Scholar

[33] K. Mohamed and F. Benkhaldoun, “A modified Rusanov scheme for shallow water equations with topography and two phase flows,” Eur. Phys. J. Plus, vol. 131, p. 207, 2016. https://doi.org/10.1140/epjp/i2016-16207-3.Suche in Google Scholar

[34] K. Mohamed, “A finite volume method for numerical simulation of shallow water models with porosity,” Comput. Fluids, vol. 104, pp. 9–19, 2014. https://doi.org/10.1016/j.compfluid.2014.07.020.Suche in Google Scholar

[35] S. J. Sherwin, L. Formaggia, J. Peiro, and V. Franke, “Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system,” Int. J. Numer. Methods Fluid., vol. 43, nos. 6–7, pp. 673–700, 2003. https://doi.org/10.1002/fld.543.Suche in Google Scholar

[36] P. Gupta, R. K. Chaturvedi, and L. P. Singh, “The generalized Riemann problem for the Chaplygin gas equation,” Eur. J. Mech. B Fluid, vol. 82, pp. 61–65, 2020. https://doi.org/10.1016/j.euromechflu.2020.03.001.Suche in Google Scholar

[37] S. Mungkasi and S. G. Roberts, “A smoothness indicator for numerical solutions to the Ripa model,” J. Phys. Conf., vol. 693, p. 012011, 2016. https://doi.org/10.1088/1742-6596/693/1/012011.Suche in Google Scholar

[38] K. Mohamed and A. R. Seadawy, “Finite volume scheme for numerical simulation of the sediment transport model,” Int. J. Mod. Phys. B, vol. 33, no. 24, 2019, Art no. 1950283. https://doi.org/10.1142/S0217979219502837.Suche in Google Scholar

[39] K. Mohamed and M. A. E. Abdelrahman, “The modified Rusanov scheme for solving the ultra-relativistic Euler equations,” Eur. J. Mech. B Fluid, vol. 90, pp. 89–98, 2021. https://doi.org/10.1016/j.euromechflu.2021.07.014.Suche in Google Scholar

[40] R. J. LeVeque, Numerical Methods for Conservation Laws, Basel, Switzerland, Birkhäuser Verlag, 1992.10.1007/978-3-0348-8629-1Suche in Google Scholar

[41] P. K. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 21, pp. 995–1011, 1984. https://doi.org/10.1137/0721062.Suche in Google Scholar

[42] B. Van Leer, “Towards the ultimate conservative difference schemes V. A second-order Ssequal to Godunov’s method,” J. Comp. Phys., vol. 32, pp. 101–136, 1979. https://doi.org/10.1016/0021-9991(79)90145-1.Suche in Google Scholar

[43] W. Dreyer and S. Qamar, “Second order accurate explicit finite volume schemes for the solution of Boltzmann-Peierls equation,” in Preprint, Number 860, Weierstrass Institute Berlin (WIAS), 2003.Suche in Google Scholar

Received: 2021-07-26
Revised: 2022-04-09
Accepted: 2022-04-26
Published Online: 2022-05-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Testing of logarithmic-law for the slip with friction boundary condition
  4. A new clique polynomial approach for fractional partial differential equations
  5. The modified Rusanov scheme for solving the phonon-Bose model
  6. Delta-shock for a class of strictly hyperbolic systems of conservation laws
  7. The Cădariu–Radu method for existence, uniqueness and Gauss Hypergeometric stability of a class of Ξ-Hilfer fractional differential equations
  8. Novel periodic and optical soliton solutions for Davey–Stewartson system by generalized Jacobi elliptic expansion method
  9. The simulation of two-dimensional plane problems using ordinary state-based peridynamics
  10. Reduced basis method for the nonlinear Poisson–Boltzmann equation regularized by the range-separated canonical tensor format
  11. Simulation of the crystallization processes by population balance model using a linear separation method
  12. PS and GW optimization of variable sliding gains mode control to stabilize a wind energy conversion system under the real wind in Adrar, Algeria
  13. Characteristics of internal flow of nozzle integrated with aircraft under transonic flow
  14. Magnetogasdynamic shock wave propagation using the method of group invariance in rotating medium with the flux of monochromatic radiation and azimuthal magnetic field
  15. The influence pulse-like near-field earthquakes on repairability index of reversible in mid-and short-rise buildings
  16. Intelligent controller for maximum power extraction of wind generation systems using ANN
  17. A new self-adaptive inertial CQ-algorithm for solving convex feasibility and monotone inclusion problems
  18. Existence and Hyers–Ulam stability of solutions for nonlinear three fractional sequential differential equations with nonlocal boundary conditions
  19. A study on solvability of the fourth-order nonlinear boundary value problems
  20. Adaptive control for position and force tracking of uncertain teleoperation with actuators saturation and asymmetric varying time delays
  21. Framing the hydrothermal significance of water-based hybrid nanofluid flow over a revolving disk
  22. Catalytic surface reaction on a vertical wavy surface placed in a non-Darcy porous medium
  23. Carleman framework filtering of nonlinear noisy phase-locked loop system
  24. Corrigendum
  25. Corrigendum to: numerical modeling of thermal influence to pollutant dispersion and dynamics of particles motion with various sizes in idealized street canyon
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0305/html?lang=de
Button zum nach oben scrollen