Home Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities
Article
Licensed
Unlicensed Requires Authentication

Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities

  • Alibek Issakhov EMAIL logo and Aidana Alimbek
Published/Copyright: November 28, 2022

Abstract

In this work, numerical modeling and assessment of the dispersion of pollutants as a result of a chemical reaction from the activities of the Ekibastuz SDPP-1 was considered. The simulation was done on a valid thermal power plant. At the same time, to model the dispersion of pollutants NO, NO2 and CO were used, and the products NO2, HNO3 and CO2 from a chemical reaction with oxygen were also considered. The validation of the mathematical model, taking into account the chemical reaction, was carried out using several test problems and the obtained numerical results were compared with experimental data and numerical data of other authors. So in this work, estimates of the concentration level were given, both for pollutants and for products that were formed from a chemical reaction. As a result, the mass fractions of concentration and product were determined during a chemical reaction for various distances from chimneys. According to the data obtained, it can be noticed that, under the influence of diffusion, concentrations and products during a chemical reaction spread wider in width and due to this diffusion, the concentration level with an increase in the distance from the chimneys is lower. So, according to the data obtained, it is possible to assess the choice of the optimal distance of the thermal power plant from residential areas, at which the concentration of emissions and products from a chemical reaction will remain at a safe level.


Corresponding author: Alibek Issakhov, Kazakh British Technical University, Almaty, Republic of Kazakhstan; International Information Technology University, Almaty, Republic of Kazakhstan; and al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by grant from the Ministry of education and science of the Republic of Kazakhstan.

  3. Conflict of interest statement: The author declares that there is no conflict of interests regarding the publication of this paper.

References

[1] P. Ajersch, J. M. Zhou, S. Ketler, M. Salcudean, and I. S. Gartshore, “Multiple jets in a cross flow: detailed measurements and numerical simulations, international gas turbine and aeroengine congress and exposition,” in ASME Paper 95-GT-9, Houston, TX, 1995, pp. 1–16.10.1115/95-GT-009Search in Google Scholar

[2] J. Andreopoulos and W. Rodi, “Experimental investigation of jets in a crossflow,” J. Fluid Mech., vol. 138, pp. 93–127, 1984. https://doi.org/10.1017/s0022112084000057.Search in Google Scholar

[3] R. Atkinson and W. P. L. Carter, “Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions,” Chem. Rev., vol. 84, pp. 437–470, 1984. https://doi.org/10.1021/cr00063a002.Search in Google Scholar

[4a] R. Atkinson, “Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds,” J. Phys. Chem Ref Data. Monogr., vol. 1, pp. 11–246, 1989. https://doi.org/10.1016/0960-1686(90)90438-s.Search in Google Scholar

4b. R. Atkinson, “Gas-phase tropospheric chemistry of organic compounds: a review,” Atmos. Environ., Part A, vol. 24, pp. 1–41, 1990. https://doi.org/10.1016/0960-1686(90)90438-s.Search in Google Scholar

[5] R. Atkinson, D. Hasegawa, and S. M. Aschmann, “Rate constants for the gas-phase reactions of 03 with a series of monoterpenes and related compounds at 296 + 2 K,” Int. J. Chem. Kinet., vol. 22, pp. 871–887, 1990. https://doi.org/10.1002/kin.550220807.Search in Google Scholar

[6] K. Ahmad, M. Khare, and K. K. Chaudhry, “Wind tunnel simulation studies on dispersion at urban street canyons and intersections – a review,” J. Wind Eng. Ind. Aerod., vol. 93, p. 697e717, 2005. https://doi.org/10.1016/j.jweia.2005.04.002.Search in Google Scholar

[7] K. Andersson and F. Johnsson, “Combustion and flame characteristics of oxy-fuel combustion-experimental activities within the Encap project,” in Proc. GHGT-8 Conf. Trondheim, vol. 2006, 2006.Search in Google Scholar

[8] K. Andersson and F. Johnsson, “Flame and radiation characteristics of gas-fired O2/CO2 combustion,” Fuel, vol. 86, pp. 656–668, 2007. https://doi.org/10.1016/j.fuel.2006.08.013.Search in Google Scholar

[9] A. H. Al-Abbas, J. Naser, and D. Dodds, “CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 KW furnace,” Fuel, vol. 90, pp. 1778–1795, 2011. https://doi.org/10.1016/ j.fuel.2011.01.014.10.1016/j.fuel.2011.01.014Search in Google Scholar

[10] J. Andersen, C. L. Rasmussen, T. Giselsson, and P. Glarborg, “Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions,” Energy Fuels, vol. 23, pp. 1379–1389, 2009. https://doi.org/10.1021/ef8003619.Search in Google Scholar

[11] V. B. Bright, W. J. Bloss, and X. M. Cai, “Urban street canyons: coupling dynamics, chemistry and within-canyon chemical processing of emissions,” Atmos. Environ., vol. 68, p. 127e142, 2013. https://doi.org/10.1016/j.atmosenv.2012.10.056.Search in Google Scholar

[12] A. Bahta, R. Simonaitis, and J. Heicklen, “Reactions of ozone with olefins: ethylene, allene, 1, 3-butadiene, and trans-1, 3-pentadiene,” Int. J. Chem. Kinet., vol. 16, pp. 1227–1246, 1984. https://doi.org/10.1002/kin.550161006.Search in Google Scholar

[13] P. J. Bennett, S. J. Harris, and J. A. Kerr, “A reinvestigation of the rate constants for the reactions of ozone with cyclopentene and cyclohexene under atmospheric conditions,” Int. J. Chem. Kinet., vol. 19, pp. 609–614, 1987. https://doi.org/10.1002/kin.550190703.Search in Google Scholar

[14] W. J. Bloss, “Atmospheric chemical processes of importance in cities,” in Air Quality in Urban Environments, R. M. Harrison, and R. E. Hester, Eds., Cambridge, The Royal Society of Chemistry, 2009.10.1039/9781847559654-00042Search in Google Scholar

[15] G. Bulat, W. P. Jones, and A. J. Marquis, “No and co formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method,” Combust. Flame, vol. 161, pp. 1804–1825, 2014. https://doi.org/10.1016/j.combustflame.2013.12.028.Search in Google Scholar

[16] D. Crabb, D. Dura'o, and J. Whitelaw, “A round jet normal to a crossflow,” Trans. ASME: J. Fluid Eng., vol. 103, pp. 568–580, 1981. https://doi.org/10.1115/1.3240764.Search in Google Scholar

[17] T. J. Chung, Computational Fluid Dynamics, Cambridge, Cambridge University Press, 2002, p. 1012.10.1017/CBO9780511606205Search in Google Scholar

[18] J. A. Denev, J. Fröhlich, and H. Bockhorn, “Direct Numerical Simulation of mixing and chemical reactions in a round jet into a crossflow – a Benchmark,” in Transaction of the High Performance Computing Center Stuttgart (HLRS) 2006, W. E. Nagel, W. Jaeger, and M. Resch, Eds., Springer, 2006, pp. 237–251.10.1007/978-3-540-36183-1_17Search in Google Scholar

[19] C. Deniz and A. Kilic, “Estimation and assessment of shipping emissions in the region ofAmbarlıport, Turkey,” Environ. Prog. Sustain. Energy, vol. 29, pp. 107–115, 2009. https://doi.org/10.1002/ep.Search in Google Scholar

[20] R. E. Dunmore, J. R. Hopkins, R. T. Lidster, J. D. Lee, M. J. Evans, A. R. Rickard, A. C. Lewis, and J. F. Hamilton, “Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities,” Atmos. Chem. Phys., vol. 15, p. 9983e9996, 2015. https://doi.org/10.5194/acp-15-9983-2015.Search in Google Scholar

[21] M. Ditaranto and T. Oppelt, “Radiative heat flux characteristics of methane flames in oxyfuel atmospheres,” Exp. Therm. Fluid Sci., vol. 35, pp. 1343–1350, 2011. https://doi.org/10. 1016/j.expthermflusci.2011.05.002.10.1016/j.expthermflusci.2011.05.002Search in Google Scholar

[22] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 3rd ed. London, Springer, 2013, p. 426.Search in Google Scholar

[23] C. J. Falconi, J. A. Denev, J. Frohlich, H. Bockhorn, A test case for microreactor flows – a two-dimensional jet in crossflow with chemical reaction, Intern. Rep., 2007. Available at: http://www.ict.uni-karlsruhe.de/index.pl/themen/dns/index.html: “2d test case for microreactor flows. Internal report.Search in Google Scholar

[24] A. Frassoldati, A. Cuoci, and T. Faravelli, “Simplified kinetic schemes for oxy-fuel combustion,” 1st Int. Conf. Sustain. Foss. Fuels Futur. Energy, pp. 6–10, 2009.Search in Google Scholar

[25] B. Fiorina, D. Veynante, and S. Candel, “Modeling combustion chemistry in Large-Eddy Simulation of turbulent flames,” Flow, Turbul. Combust., vol. 94, pp. 3–42, 2015. https://doi.org/10.1007/s10494-014-9579-8.Search in Google Scholar

[26] J. Z. Gillies, C. W. Gillies, R. D. Suenram, and F. J. Lovas, “The ozonolysis of ethylene: microwave spectrum, molecular structure, and dipole moment of ethylene primary ozonide (1, 2, 3-trioxolane),” J. Am. Chem. Soc., vol. 110, pp. 7991–7999, 1988. https://doi.org/10.1021/ja00232a007.Search in Google Scholar

[27] A. Georgakaki, R. A. Coffey, G. Lock, and S. C. Sorenson, “Transport and environment da-tabase system (TRENDS): maritime air pollutant emission modelling,” Atmos. Environ., vol. 39, pp. 2357–2365, 2005. https://doi.org/10.1016/j.atmosenv.2004.07.038.Search in Google Scholar

[28] D. Grosjean, “Gas-phase reaction of ozone with 2-methyl-2-butene: dicarbonyl formation from Criegee biradicals,” Environ. Sci. Technol., vol. 24, pp. 1428–1432, 1990. https://doi.org/10.1021/es00079a019.Search in Google Scholar

[29] B. G. Goar, Proceedings of the Laurance Reid Gas Conditioning Conference, 1989. March 6–8.Search in Google Scholar

[30] B. G. Goar and J. B. Hyne, Proceedings of the Laurance Reid Gas Conditioning Conference, 1996.Search in Google Scholar

[31] A. ul Haq, Q. Nadeem, A. Farooq, N. Irfan, M. Ahmad, and M. R. Ali, “Assessment of AERMOD modeling system for application in complex terrain in Pakistan,” Atmos. Pollut. Res., vol. 10, pp. 1492–1497, 2019. https://doi.org/10.1016/j.apr.2019.04.006.Search in Google Scholar

[32] S. Hatakeyama and H. Akimoto, “Reactions of ozone with 1-methylcyclohexene and methylenecyclohexane in air,” Bull. Chem. Soc. Jpn., vol. 63, pp. 2701–2703, 1990. https://doi.org/10.1246/bcsj.63.2701.Search in Google Scholar

[33] J. T. Herron and R. E. Huie, “Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas phase: propene and isobutene,” Int. J. Chem. Kinet., vol. 10, pp. 1019–1041, 1978. https://doi.org/10.1002/kin.550101003.Search in Google Scholar

[34] O. Horie and G. K. Moortgat, “Decomposition pathways of the excited Criegee intermediates in the ozonolysis of simple alkenes,” Atmos. Environ., Part A, vol. 25, pp. 1881–1896, 1991. https://doi.org/10.1016/0960-1686(91)90271-8.Search in Google Scholar

[35] M. A. Habib, S. S. Rashwan, M. A. Nemitallah, and A. Abdelhafez, “Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor,” Appl. Energy, vol. 189, pp. 177–186, 2017. https://doi.org/10.1016/j.apenergy. 2016.12.067.10.1016/j.apenergy.2016.12.067Search in Google Scholar

[36] A. Issakhov, “Modeling of synthetic turbulence generation in boundary layer by using Zonal RANS/LES method,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 15, pp. 115–120, 2014. https://doi.org/10.1515/ijnsns-2012-0029.Search in Google Scholar

[37] A. Issakhov, “Mathematical modeling of the discharged heat water effect on the aquatic environment from thermal power plant under various operational capacities,” Appl. Math. Model., vol. 40, no. 2, pp. 1082–1096, 2016. https://doi.org/10.1016/j.apm.2015.06.024.Search in Google Scholar

[38] A. Issakhov, Y. Zhandaulet, and A. Nogaeva, “Numerical simulation of dam break flow for various forms of the obstacle by VOF method,” Int. J. Multiphas. Flow, vol. 109, pp. 191–206, 2018. https://doi.org/10.1016/j.ijmultiphaseflow.2018.08.003.Search in Google Scholar

[39] A. Issakhov and M. Imanberdiyeva, “Numerical simulation of the movement of water surface of dam break flow by VOF methods for various obstacles,” Int. J. Heat Mass Tran., vol. 136, pp. 1030–1051, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.034.Search in Google Scholar

[40] A. Issakhov, R. Bulgakov, and Y. Zhandaulet, “Numerical study of the dynamics of particles motion with different sizes from coal-based thermal power plant,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 20, no. 2, pp. 223–241, 2019. https://doi.org/10.1515/ijnsns-2018-0182.Search in Google Scholar

[41] A. Issakhov and A. Mashenkova, “Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes,” Int. J. Environ. Sci. Technol., vol. 16, no. 10, pp. 6089–6112, 2019. https://doi.org/10.1007/s13762-019-02211-y.Search in Google Scholar

[42] A. Issakhov and A. R. Baitureyeva, “Modeling of a passive scalar transport from thermal power plants to atmospheric boundary layer,” Int. J. Environ. Sci. Technol., vol. 16, pp. 4375–4392, 2019. https://doi.org/10.1007/s13762-019-02273-y.Search in Google Scholar

[43] A. Issakhov and Y. Zhandaulet, “Numerical simulation of thermal pollution zones’ formations in the water environment from the activities of the power plant,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 279–299, 2019. https://doi.org/10.1080/19942060.2019.1584126.Search in Google Scholar

[44] A. Issakhov, A. Alimbek, and Y. Zhandaulet, “The assessment of water pollution by chemical reaction products from the activities of industrial facilities: numerical study,” J. Clean. Prod., vol. 282, p. 125239, 2021. https://doi.org/10.1016/j.jclepro.2020.125239.Search in Google Scholar

[45] K. Izumi, K. Murano, M. Mizuochi, and T. Fukuyama, “Aerosol formation by the photooxidation of cyclohexene in the presence of nitrogen oxides,” Environ. Sci. Technol., vol. 22, pp. 1207–1215, 1988. https://doi.org/10.1021/es00175a014.Search in Google Scholar PubMed

[46] M. Z. Jacobson, Fundamentals of Atmospheric Modeling, New York, Cambridge University Press, 2005.10.1017/CBO9781139165389Search in Google Scholar

[47] M. J. Kim, R. J. Park, and J. J. Kim, “Urban air quality modeling with full O3–NOx–VOC chemistry: implications for O3 and PM air quality in a street canyon,” Atmos. Environ., vol. 47, pp. 330–340, 2012. https://doi.org/10.1016/j.atmosenv.2011.10.059.Search in Google Scholar

[48] H. Kikumoto and R. Ooka, “A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation,” Atmos. Environ., vol. 54, pp. 456–464, 2012. https://doi.org/10.1016/j.atmosenv.2012.02.039.Search in Google Scholar

[49] R. M. Kelso, T. T. Lim, and A. E. Perry, “An experimental study of round jets in cross-flow,” J. Fluid Mech., vol. 306, pp. 111–144, 1996. https://doi.org/10.1017/s0022112096001255.Search in Google Scholar

[50] J. Keffer and W. Baines, “The round turbulent jet in a cross-wind,” J. Fluid Mech., vol. 15, pp. 481–497, 1963. https://doi.org/10.1017/s0022112063000409.Search in Google Scholar

[51] R. M. Keimasi and M. Taeibi-Rahni, “Numerical simulation of jets in a crossflow using different turbulence models,” AIAA J., vol. 39, no. 12, pp. 2268–2277, 2001. https://doi.org/10.2514/3.15022.Search in Google Scholar

[52] S. L. Kuzu, “Estimation and dispersion modeling of landing and take-off (LTO) cycleemissions from Atatürk International Airport,” Air Qual. Atmos. Heal., vol. 11, pp. 153–161, 2018. https://doi.org/10.1007/s11869-017-0525-5.Search in Google Scholar

[53] K. H. Kwak, J. J. Baik, and K. Y. Lee, “Dispersion and photochemical evolution of reactive pollutants in street canyons,” Atmos. Environ., vol. 70, p. 98e107, 2013. https://doi.org/10.1016/j.atmosenv.2013.01.010.Search in Google Scholar

[54] H. K. Kim, Y. Kim, S. M. Lee, and K. Y. Ahn, “Studies on combustion characteristics and flame length of turbulent oxy-fuel flames,” Energy Fuels, vol. 21, pp. 1459–1467, 2007. http://doi.org/10.1021/ef060346g.10.1021/ef060346gSearch in Google Scholar

[55] A. E. E. Khalil and A. K. Gupta, “Acoustic and heat release signatures for swirl assisted distributed combustion,” Appl. Energy, vol. 193, pp. 125–138, 2017. https://doi.org/10.1016/j. apenergy.2017.02.030.10.1016/j.apenergy.2017.02.030Search in Google Scholar

[56] A. E. E. Khalil and A. K. Gupta, “Flame fluctuations in Oxy-CO2-methane mixtures in swirl assisted distributed combustion,” Appl. Energy, vol. 204, pp. 303–317, 2017. https://doi.org/10.1016/j.apenergy.2017.07.037.Search in Google Scholar

[57] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng., vol. 3, pp. 269–289, 1974. https://doi.org/10.1016/0045-7825(74)90029-2.Search in Google Scholar

[58] Y. Li, H. Li, H. Guo, Y. Li, and M. Yao, “A numerical investigation on NO2 formation in a natural gas–diesel dual fuel engine,” J. Eng. Gas Turbines Power, vol. 140, no. 9, p. 092804, 2018. https://doi.org/10.1115/1.4039734.Search in Google Scholar

[59] Z. Li, H. Xu, W. Yang, M. Xu, and F. Zhao, “Numerical investigation and thermodynamic analysis of syngas production through chemical looping gasification using biomass as fuel,” Fuel, vol. 246, pp. 466–475, 2019. https://doi.org/10.1016/j.fuel.2019.03.007.Search in Google Scholar

[60] G. Liu, Y. Liao, Y. Wu, X. Ma, and L. Chen, “Characteristics of microalgae gasification through chemical looping in the presence of steam,” Int. J. Hydrog. Energy, vol. 42, pp. 22730–22742, 2017. https://doi.org/10.1016/j.ijhydene.2017.07.173.Search in Google Scholar

[61] X. X. Li, D. Y. C. Leung, C. H. Liu, and K. M. Lam, “Physical modeling of flow field inside urban street canyons,” J. Appl. Meteorol. Climatol., vol. 47, p. 2058e2067, 2008. https://doi.org/10.1175/2007jamc1815.1.Search in Google Scholar

[62] X. X. Li, C. H. Liu, and D. Y. C. Leung, “Large-eddy simulation of flow and pollutant dispersion in high-aspect-ratio urban street canyons with wall model,” Bound.-Lay. Meteorol., vol. 129, p. 249e268, 2008. https://doi.org/10.1007/s10546-008-9313-y.Search in Google Scholar

[63] X. X. Li, R. E. Britter, L. K. Norford, T. Y. Koh, and D. Entekhabi, “Flow and pollutant transport in urban street canyons of different aspect ratios with ground heating: large-eddy simulation,” Bound.-Lay. Meteorol., vol. 142, p. 289e304, 2012. https://doi.org/10.1007/s10546-011-9670-9.Search in Google Scholar

[64] B. Li, B. Shi, X. Zhao, K. Ma, D. Xie, D. Zhao, et al.., “Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: operation limits and combustion instability,” Exp. Therm. Fluid Sci., vol. 90, pp. 115–124, 2018. https://doi.org/10. 1016/j.expthermflusci.2017.09.001.10.1016/j.expthermflusci.2017.09.001Search in Google Scholar

[65] V. Muñoz, C. Casado, S. Suárez, B. Sánchez, and J. Marugán, “Photocatalytic NOx removal: rigorous kinetic modelling and ISO standard reactor simulation,” C atal. Today, vol. 326, 2018. https://doi.org/10.1016/j.cattod.2018.09.001.Search in Google Scholar

[66] O. Mărunţălu, G. Lăzăroiu, E. Manea, D. Bondrea, and L. Robescu, “Numerical simulation of the air pollutants dispersion emitted by CHP using ANSYS CFX’. World academy of science, engineering and technology, international science index 105,” Int. J. Environ., Chem., Ecol., Geol. Geophys. Eng., vol. 9, no. 9, pp. 951–957, 2015.Search in Google Scholar

[67] S. Muppidi and K. Mahesh, “Study of trajectories of jets in crossflow using direct numerical simulations,” J. Fluid Mech., vol. 530, pp. 81–100, 2005. https://doi.org/10.1017/s0022112005003514.Search in Google Scholar

[68] S. Muppidi and K. Mahesh, “Direct numerical simulation of passive scalar transport in transverse jets,” J. Fluid Mech., vol. 598, pp. 335–360, 2008. https://doi.org/10.1017/s0022112007000055.Search in Google Scholar

[69] P. Majander and T. Siikonen, “Large-eddy simulation of a round jet in a cross-flow,” Int. J. Heat Fluid Flow, vol. 27, no. 3, pp. 402–415, 2006. https://doi.org/10.1016/j.ijheatfluidflow.2006.01.004.Search in Google Scholar

[70] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994. https://doi.org/10.2514/3.12149.Search in Google Scholar

[71] R. I. Martinez and J. T. Herron, “Stopped-flow studies of the mechanisms of ozone-alkene reactions in the gas-phase: trans-2-Butene,” J. Phys. Chem., vol. 92, pp. 4644–4648, 1988. https://doi.org/10.1021/j100327a017.Search in Google Scholar

[72] R. I. Martinez, J. T. Herron, and R. E. Huie, “The mechanism of ozone-alkene reactions in the gas phase: a mass spectrometric study of the reactions of eight linear and branched-chain alkenes,” J. Am. Chem. Soc., vol. 103, pp. 3807–3820, 1981. https://doi.org/10.1021/ja00403a031.Search in Google Scholar

[73] H. Mayer, “Air pollution in cities,” Atmos. Environ., vol. 33, p. 4029e4037, 1999. https://doi.org/10.1016/s1352-2310(99)00144-2.Search in Google Scholar

[74] R. N. Maddox, Gas Conditioning and Processing: Gas and Liquid Sweetening, Campbell Petroleum Series, USA, 1998.Search in Google Scholar

[75] H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, “Atmospheric ozone-olefin reactions,” Environ. Sci. Technol., vol. 17, pp. 312A–322A, 1983. https://doi.org/10.1021/es00113a720.Search in Google Scholar PubMed

[76] H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, and M. D. Hurley, “FTIR spectroscopic study of the mechanism for the gas-phase reaction between ozone and tetramethylethylene,” J. Phys. Chem., vol. 91, pp. 941–946, 1987. https://doi.org/10.1021/j100288a035.Search in Google Scholar

[77] F. Nolting, W. Behnke, and C. Zetzsch, “A smog chamber for studies of the reactions of terpenes and alkanes with ozone and OH,” J. Atmos. Chem., vol. 6, pp. 47–59, 1988. https://doi.org/10.1007/bf00048331.Search in Google Scholar

[78] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Boca Raton, 1980.Search in Google Scholar

[79] S. E. Paulson, R. C. Flagan, and J. H. Seinfeld, “Atmospheric photooxidation of isoprene, 2, the ozone-isoprene reaction,” Int. J. Chem. Kinet., vol. 24, pp. 103–125, 1992. https://doi.org/10.1002/kin.550240110.Search in Google Scholar

[80] S. P. Shi, S. E. Zitney, M. Shahnam, M. Syamlal, and W. A. Rogers, “Modelling coal gasification with CFD and discrete phase method,” J. Energy Inst., vol. 79, no. 4, pp. 217–221, 2006. https://doi.org/10.1179/174602206x148865.Search in Google Scholar

[81] S. Shi, C. Guenther, and S. Orsino, “Numerical study of coal gasification using eulerian-eulerian multiphase model,” in ASME 2007 Power Conference, 2007.10.1115/POWER2007-22144Search in Google Scholar

[82] S. A. Sherif and R. H. Pletcher, “Measurements of the flow and turbulence characteristics of round jets in crossflow,” J. Fluid Eng., vol. 111, pp. 165–171, 1989. https://doi.org/10.1115/1.3243618.Search in Google Scholar

[83] W. Schonauer and T. Adolph, “FDEM: the evolution and application of the finite difference element method (FDEM) program package for the solution of partial differential equations,” in Abschlussbericht des Verbundprojekts FDEM, Universitat Karlsruhe, 2005. Available at: http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur/fdem.pdf.Search in Google Scholar

[84] B. Shorees, R. Atkinson, and J. Arey, “Kinetics of the gas-phase reactions of/3-phellandrene with OH and NO 3 radicals and 03 at 297. 2 K,” Int. J. Chem. Kinet., vol. 23, pp. 897–906, 1991. https://doi.org/10.1002/kin.550231005.Search in Google Scholar

[85] J. S. Stamler, A. J. Gow, “Reactions between nitric oxide and haemoglobin under physiological conditions,” Nature, vol. 391, no. 6663, pp. 169–173, 1998. https://doi.org/10.1038/34402.Search in Google Scholar PubMed

[86] S. M. Salim, R. Buccolieri, A. Chan, and S. Di sabatino, “Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: comparison between RANS and LES,” J. Wind Eng. Ind. Aerod., vol. 99, p. 103e113, 2011. https://doi.org/10.1016/j.jweia.2010.12.002.Search in Google Scholar

[87] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, et al.., GRI-Mech, vol. 51, 1999, p.55. Available at: http://www.me.berkeley.edu/gri-mech.Search in Google Scholar

[88] U.S. Environmental Protection Agency, Clean Air Markets Division. Available at: https://ampd.epa.gov/ampd/, 2021.Search in Google Scholar

[89] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics—The Finite Volume Method, Logman Malaysia, Reprinted, 1996, Malaysia, Chaps. 5–7.Search in Google Scholar

[90] S. Vardoulakis, B. E. A. Fisher, K. Pericleous, and N. Gonzalez-flesca, “Modelling air quality in street canyons: a review,” Atmos. Environ., vol. 37, p. 155e182, 2003. https://doi.org/10.1016/s1352-2310(02)00857-9.Search in Google Scholar

[91] B. Wegner and Y. A. S. Huai, “Comparative study of turbulent mixing in jet in cross-flow configurations using les,” Int. J. Heat Fluid Flow, vol. 25, pp. 767–775, 2004. https://doi.org/10.1016/j.ijheatfluidflow.2004.05.015.Search in Google Scholar

[92] Z. Wu and C. H. Liu, “Budget analysis for reactive plume transport over idealised urban areas,” Geosci. Lett., vol. 5, pp. 1–7, 2018. https://doi.org/10.1186/s40562-018-0118-7.Search in Google Scholar

[93] L. Yuan, R. Street, and J. Ferziger, “Large-eddy simulations of a round jet in crossflow,” J. Fluid Mech., vol. 379, pp. 71–104, 1999. https://doi.org/10.1017/s0022112098003346.Search in Google Scholar

[94] Y. Yokouchi and Y. Ambe, “Aerosols formed from the chemical reaction of monoterpenes and ozone,” Atmos. Environ., vol. 19, pp. 1271–1276, 1985. https://doi.org/10.1016/0004-6981(85)90257-4.Search in Google Scholar

[95] A. W. M. Yazid, N. A. C. Sidik, S. M. Salim, and K. M. Saqr, “A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies,” Simul. Trans. Soc. Model. Simul. Int., vol. 90, p. 892e916, 2014. https://doi.org/10.1177/0037549714528046.Search in Google Scholar

[96] J. Zhong, X. M. Cai, and W. J. Bloss, “Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation,” Environ. Pollut., vol. 200, pp. 42–52, 2015. https://doi.org/10.1016/j.envpol.2015.02.009.Search in Google Scholar PubMed

[97] J. Ziefle and L. Kleiser, “Large-eddy simulation of a round jet in crossflow,” AIAA J., vol. 47, no. 5, pp. 1158–1172, 2009. https://doi.org/10.2514/1.38465.Search in Google Scholar

[98] J. Zozom, C. W. Gillies, R. D. Suenram, and F. J. Lovas, “Microwave detection of the primary ozonide of ethylene in the gas phase,” Chem. Phys. Lett., vol. 140, no. 1, pp. 64–70, 1987. https://doi.org/10.1016/0009-2614(87)80418-9.Search in Google Scholar

[99] J. Zhong, X. Cai, and W. J. Bloss, “Coupling dynamics and chemistry in the air pollution modelling of street canyons: a review,” Environ. Pollut., vol. 214, p. 690e704, 2016. https://doi.org/10.1016/j.envpol.2016.04.052.Search in Google Scholar PubMed

[100] A. Issakhov, and P. Omarova, “Numerical simulation of pollutant dispersion in the residential areas with continuous grass barriers,” Int. J. Environ. Sci. Technol., vol. 17, pp. 525–540, 2020. https://doi.org/10.1007/s13762-019-02517-x.Search in Google Scholar

[101] A. Issakhov, and P. Omarova, “Modeling and analysis of the effects of barrier height on automobiles emission dispersion,” J. Clean. Prod., vol. 296, p. 126450, 2021. https://doi.org/10.1016/j.jclepro.2021.126450.Search in Google Scholar

[102] A. Issakhov, A. Alimbek, and A. Issakhov, “A numerical study for the assessment of air pollutant dispersion with chemical reactions from a thermal power plant,” Eng. Appl. Comput. Fluid Mech., vol. 14, pp. 1035–1061, 2020.10.1080/19942060.2020.1800515Search in Google Scholar

[103] A. Issakhov, A. Alimbek, and A. Abylkassymova, “Numerical modeling of water pollution by products of chemical reactions from the activities of industrial facilities at variable and constant temperatures of the environment,” J. Contam. Hydrol., p. 104116, 2022.10.1016/j.jconhyd.2022.104116Search in Google Scholar PubMed

[104] A. Issakhov, A. Tursynzhanova, and A. Abylkassymova, “Numerical study of air pollution exposure in idealized urban street canyons: Porous and solid barriers,” Urban Clim., p. 101112, 2022.10.1016/j.uclim.2022.101112Search in Google Scholar

[105] A. Issakhov, A. Abylkassymova, and A. Issakhov, “Assessment of the influence of the barriers height and trees with porosity properties on the dispersion of emissions from vehicles in a residential area with various types of building developments,” J. Clean. Prod., p. 132581, 2022.10.1016/j.jclepro.2022.132581Search in Google Scholar

Received: 2020-03-05
Accepted: 2022-09-29
Published Online: 2022-11-28
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities
  4. Stochastic dynamics of dielectric elastomer balloon with viscoelasticity under pressure disturbance
  5. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle
  6. Fractional-order generalized Legendre wavelets and their applications to fractional Riccati differential equations
  7. Battery discharging model on fractal time sets
  8. Adaptive neural network control of second-order underactuated systems with prescribed performance constraints
  9. Optimal control for dengue eradication program under the media awareness effect
  10. Shifted Legendre spectral collocation technique for solving stochastic Volterra–Fredholm integral equations
  11. Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations
  12. Mathematical analysis of the impact of vaccination and poor sanitation on the dynamics of poliomyelitis
  13. Anti-sway method for reducing vibrations on a tower crane structure
  14. Stable soliton solutions to the time fractional evolution equations in mathematical physics via the new generalized G / G -expansion method
  15. Convergence analysis of online learning algorithm with two-stage step size
  16. An estimative (warning) model for recognition of pandemic nature of virus infections
  17. Interaction among a lump, periodic waves, and kink solutions to the KP-BBM equation
  18. Global exponential stability of periodic solution of delayed discontinuous Cohen–Grossberg neural networks and its applications
  19. An efficient class of fourth-order derivative-free method for multiple-roots
  20. Numerical modeling of thermal influence to pollutant dispersion and dynamics of particles motion with various sizes in idealized street canyon
  21. Construction of breather solutions and N-soliton for the higher order dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising from wave patterns
  22. Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation
  23. Construction of complexiton-type solutions using bilinear form of Hirota-type
  24. Inverse estimation of time-varying heat transfer coefficients for a hollow cylinder by using self-learning particle swarm optimization
  25. Infinite line of equilibriums in a novel fractional map with coexisting infinitely many attractors and initial offset boosting
  26. Lump solutions to a generalized nonlinear PDE with four fourth-order terms
  27. Quantum motion control for packaging machines
Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0045/html?lang=en
Scroll to top button