Startseite Multiplicity Results for Degenerate Fractional p-Laplacian Problems with Critical Growth
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiplicity Results for Degenerate Fractional p-Laplacian Problems with Critical Growth

  • Li Wang und Jixiu Wang EMAIL logo
Veröffentlicht/Copyright: 7. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we deal with the existence of multiple nontrivial solutions for the following fractional p-Laplacian Kirchhoff problems

(R2N|u(x)u(y)|p|xy|N+psdxdy)θ1(Δ)psu=λ|u|θp2u+|u|ps2uinΩ,u=0inRNΩ,

where parameter λ>0 belongs to some left neighbourhood of the eigenvalue of the nonlocal operator

(R2N|u(x)u(y)|p|xy|N+psdxdy)θ1(Δ)ps.

The main feature and difficulty of our problems is the fact that the problem is degenerate.

MSC 2010: 35B33; 35R11; 45C05; 58E05

Funding statement: The first author was supported by National Natural Science Foundation of China (11561024, 11701178), the second author was was supported by National Natural Science Foundation of China (11501186).

Acknowledgements

The authors would like to thank the referees for valuable comments and suggestions on improving this paper.

  1. Competing interests The authors declare that they have no competing interests.

  2. Authors contributions All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

References

[1] Corréa F. J. S. A. and Figueiredo G. M., On a p-Kirchhoff equation via Krasnoselskii’S genus, Appl. Math. Lett. 22 (2009), 819–822.10.1016/j.aml.2008.06.042Suche in Google Scholar

[2] Dai G. and Liu D., Infinitely many positive solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), 710–764.10.1016/j.jmaa.2009.06.012Suche in Google Scholar

[3] He X. and Zou W., Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009), 1407–1414.10.1016/j.na.2008.02.021Suche in Google Scholar

[4] Jin J. and Wu X., Infinitely many radial solutions for Kirchhoff-type problems in ℝN, J. Math. Anal. Appl. 369 (2010), 564–574.10.1016/j.jmaa.2010.03.059Suche in Google Scholar

[5] Kirchhoff G., Mechanik, Teubner, Leipzig, 1883.Suche in Google Scholar

[6] Alves C. O., F. J. S. A. Corréa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.10.1016/j.camwa.2005.01.008Suche in Google Scholar

[7] Fiscella A. and Valdinoci E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156–170.10.1016/j.na.2013.08.011Suche in Google Scholar

[8] Naimen D., Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, Nonlinear Differ. Equ. Appl. 21 (2014), 885–914.10.1007/s00030-014-0271-4Suche in Google Scholar

[9] He Y., Li G. and Peng S., Concentrating bound states for Kirchhoff type problem involving critical Sobolev exponents, Adv. Nonlinear Stud. 14 (2014), 483–510.10.1515/ans-2014-0214Suche in Google Scholar

[10] Wang J., L. Tian, J. Xu and Zhang F., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ. 253 (2012), 2314–2351.10.1016/j.jde.2012.05.023Suche in Google Scholar

[11] Brézis H. and Nirenberg L., Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Comm. Pure Appl. Math. 36 (1983), 437–477.10.1002/cpa.3160360405Suche in Google Scholar

[12] Lions P. L., The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoam. 1 (1985), 145–201.10.4171/RMI/6Suche in Google Scholar

[13] Perera K., Squassina M. and Yang Y., Birfucation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), 332–342.10.1002/mana.201400259Suche in Google Scholar

[14] D’Ancona P. and Spagnolo S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108} (1992), 247–262.10.1007/BF02100605Suche in Google Scholar

[15] Xiang M., Zhang B. and Ferrara M., Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), 1021– 1041.10.1016/j.jmaa.2014.11.055Suche in Google Scholar

[16] Adams R., Spaces Sobolev, Press Academic, York New, 1975.Suche in Google Scholar

[17] Agarwal R., Perera K. and Zhang Z., On some nonlocal eigenvalue problems, Discrete Contin. Dyn. Syst. S 5 (2012), 707–714.10.3934/dcdss.2012.5.707Suche in Google Scholar

[18] Fadell E. and Rabinowitz P., Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139–174.10.1007/BF01390270Suche in Google Scholar

[19] Benci V., On critical point theory for indefinite functionals in the presence of symmetrics, Trans. Amer. Math. Soc. 274 (1982), 533–572.10.1090/S0002-9947-1982-0675067-XSuche in Google Scholar

[20] Perera K., Squassina M. and Yang Y., Bifurcation and multiplicity results for critical p-Laplacian problems, Topol. Methods Nonlinear Anal.47 (2016), 187–194.10.12775/TMNA.2015.093Suche in Google Scholar

[21] Xiang M., Zhang B. and Zhang X., A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in ℝN, Adv. Stud Nonlinear. 17 (2017), 611–640.10.1515/ans-2016-6002Suche in Google Scholar

[22] Perera K., Agarwal R. P. and O’Regan D., Morse theoretic aspects of p-Laplacian type operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.10.1090/surv/161Suche in Google Scholar

Received: 2017-9-4
Accepted: 2018-2-21
Published Online: 2018-3-7
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0195/html?lang=de
Button zum nach oben scrollen