Startseite Technik Global Mittag–Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Global Mittag–Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays

  • Ramziya Rifhat , Ahmadjan Muhammadhaji EMAIL logo und Zhidong Teng
Veröffentlicht/Copyright: 17. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we investigate the synchronization problem of impulsive fractional-order neural networks with both time-varying and distributed delays. By using the fractional Lyapunov method and Mittag–Leffler function, some sufficient conditions are derived to realize the global Mittag–Leffler synchronization of impulsive fractional-order neural networks and one illustrative example is given to demonstrate the effectiveness of the obtained results.

MSC 2010: 34K37; 34K20; 34K60; 34A37

Funding statement: This research is supported by the National Natural Science Foundation of China [grant number 11601464], [grant number 11702237] and the Starting research Fund for the Xinjiang University doctoral graduates [grant number BS150202].

References

[1] Benchohra M., Henderson J., Ntouyas S., Equations Impulsive Differential and Inclusions[M], Hindawi Publishing Corporation, New York, 2006.10.1155/9789775945501Suche in Google Scholar

[2] Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations[M], World Scientific, Singapore, 1989.10.1142/0906Suche in Google Scholar

[3] Stamova I., Stability Analysis of Impulsive Functional Differential Equations[M], Walter de Gruyter, Berlin, 2009.10.1515/9783110221824Suche in Google Scholar

[4] Stamov G. T., Impulsive cellular neural networks and almost periodicity, Proc. Jpn Acad. 80(10) (2004), 198–203.10.3792/pjaa.80.198Suche in Google Scholar

[5] Li X., Wu J., Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63–69.10.1016/j.automatica.2015.10.002Suche in Google Scholar

[6] Li X., Song S., Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control. 62(1) (2017), 406–411.10.1109/TAC.2016.2530041Suche in Google Scholar

[7] Li X., Cao J., An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Trans. Autom. Control. 62 (2017), 3618–3625.10.1109/TAC.2017.2669580Suche in Google Scholar

[8] Muhammadhaji A., Abdurahman A., Jiang H., Finite-Time synchronization of complex dynamical networks with time-varying delays and nonidentical nodes, J. Control Sci. Eng. 2017 (2017), Article ID 5072308, 13, doi:10.1155/2017/5072308.Suche in Google Scholar

[9] Abdurahman A., Jiang H., Teng Z., Finite-time synchronization for fuzzy cellular neural networks withtime-varying delays, Fuzzy Sets Syst. 297 (2016), 96–111.10.1016/j.fss.2015.07.009Suche in Google Scholar

[10] Abdurahman A., Jiang H., Teng Z., Function projective synchronization of impulsive neural networks with mixed time-varying delays, Nonlinear Dyn. 78 (2014), 2627–2638.10.1007/s11071-014-1614-8Suche in Google Scholar

[11] Abdurahman A., Jiang H., Teng Z., Finite-time synchronization for memristor-based neural networks with time-varying delays, Neural Networks 69 (2015), 20–28.10.1016/j.neunet.2015.04.015Suche in Google Scholar PubMed

[12] Chen L., Qu J., Chai Y., Wu R., Qi G., Synchronization of a class of fractional-order chaotic neural networks, Entropy 15(8) (2013), 3265–3276.10.3390/e15083355Suche in Google Scholar

[13] Huang X., Zhao Z., Wang Z., Li Y., Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing 94(3) (2012), 13–21.10.1016/j.neucom.2012.01.011Suche in Google Scholar

[14] Kaslik E., Sivasundaram S., Nonlinear dynamics and chaos in fractional-order neural networks, Networks Neural 32(1) (2012), 245–256.10.1016/j.neunet.2012.02.030Suche in Google Scholar PubMed

[15] Wang F., Yang Y., Xu X., Li L., Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay, Neural Comput. Appl. 28(2) (2017), 1–8.10.1007/s00521-015-2063-0Suche in Google Scholar

[16] Stamova I., T. Stamov, N. Simeonova, Impulsive control on global exponential stability for cellular neural networks with supremums, J. Vib. Control 19(4) (2013), 483–490.10.1177/1077546312441042Suche in Google Scholar

[17] Zhang S., Yu Y., Wang H., Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Anal. Hybrid Syst. 16 (2015), 104–121.10.1016/j.nahs.2014.10.001Suche in Google Scholar

[18] Chen L., Chai Y., Wu R., Ma T., Zhai H., Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111(6) (2013), 190–194.10.1016/j.neucom.2012.11.034Suche in Google Scholar

[19] Wu R., Hei X., Chen L., Finite-time stability of fractionalorder neural networkswith delay, Commun. Theor. Phys. 60(8) (2013), 189–193.10.1088/0253-6102/60/2/08Suche in Google Scholar

[20] Li Y., Chen Y., Podlubny I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl. 59(5) (2010), 1810–1821.10.1016/j.camwa.2009.08.019Suche in Google Scholar

[21] Yang X., Li C., Huang T., Song Q., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput. 293 (2017), 416–422.10.1016/j.amc.2016.08.039Suche in Google Scholar

[22] Yang X., Li C., Song Q., Chen X., Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks, Neurocomputing 207 (2016), 276–286.10.1016/j.neucom.2016.04.045Suche in Google Scholar

[23] Huang T., Li C., Duan S., Starzyk J., Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects, IEEE Trans.Neural Networks Learn. Syst. 23(6) (2012), 866–87510.1109/TNNLS.2012.2192135Suche in Google Scholar

[24] Wang J., Wu H., Huang T., Ren S., Wu J., Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength, IEEE Trans.Neural Networks Learn. Syst. 99 (2016), 1–13.Suche in Google Scholar

[25] Razumikhin B., Stability of Hereditary Systems[M], Nauka Moscow, 1988.Suche in Google Scholar

[26] Yan J., Shen J., Impulsive stabilization of functional differential equations by Lyapunov-Razumikhin functions, Nonlinear Anal. 37(2) (1999), 245–255.10.1016/S0362-546X(98)00045-5Suche in Google Scholar

[27] Lu H., C. Leeuwen, Synchronization of chaotic neural networks via output or state coupling. Chaos Solitons Fractals 30(1) (2006), 166–176.10.1016/j.chaos.2005.08.175Suche in Google Scholar

[28] Yang Y., Cao J., Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A 386(1) (2007), 492–502.10.1016/j.physa.2007.07.049Suche in Google Scholar

[29] Stamov G., Stamova I., Almost periodic solutions for impulsive neural networks with delay. Appl. Math. Modell. 31 (2007), 1263–1270.10.1016/j.apm.2006.04.008Suche in Google Scholar

[30] Stamova I., Stamov G. Stability analysis of impulsive functional systems of fractional order, Commun. Nonlinear Sci. Numer. Simul. 19(3) (2014), 702–709.10.1016/j.cnsns.2013.07.005Suche in Google Scholar

Received: 2017-8-14
Accepted: 2018-1-5
Published Online: 2018-3-17
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0179/pdf
Button zum nach oben scrollen