Home Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents
Article
Licensed
Unlicensed Requires Authentication

Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents

  • Okon E. Okon , Nnanake-Abasi O. Offiong ORCID logo EMAIL logo , Solomon E. Shaibu , Edu J. Inam EMAIL logo , Marcellinus C. Ogudo and Eric S. Archibong
Published/Copyright: March 10, 2025
Become an author with De Gruyter Brill

Abstract

Bisphenol A (BPA), a widely used industrial chemical, is notorious for its bio-accumulative persistence and toxicity, posing significant threats to environmental and public health. The presence of BPA in industrial and wastewater effluents has become a growing concern, necessitating effective removal techniques. Current wastewater treatment methods often fall short in addressing the complexity of BPA contamination under different conditions, which highlights the urgent need for innovative solutions. One promising approach involves the use of clay and clay-derived materials, which have gained global recognition for wastewater remediation due to their abundance, eco-friendliness, low cost, tunability, and potential for regeneration. Recent research trends focus on the functionalisation of clay materials (FCMs), enhancing their efficiency in adsorbing, degrading, and removing emerging organic pollutants such as BPA, as well as heavy metals, pesticides, and polyaromatic hydrocarbons. The functionalisation of clays with various modifiers has been shown to improve their sorption capacity, degradation efficiency, and hydrophobicity. This review aims to systematically highlight the use of FCMs for the removal of BPA from industrial and wastewater effluents. A detailed description of enhanced clay materials and processes of BPA removal from these effluents has been presented in this study. However, to establish its position as an ideal candidate for BPA removal, more investigations are critical to adopt the best modification agent(s) and conditions for functionalisation.


Corresponding authors: Nnanake-Abasi O. Offiong, Department of Chemical Sciences, Topfaith University, Mkpatak, Nigeria, E-mail: ; and Edu J. Inam, International Centre for Energy and Environmental Sustainability Research (ICEESR), University of Uyo, Uyo, Nigeria; and Department of Chemistry, University of Uyo, Uyo, Nigeria, E-mail:

Acknowledgments

Okon E. Okon acknowledges the assistance and support he received from the Department of Chemistry, University of Uyo, Uyo, Nigeria during his PhD studies. The authors acknowledge the useful comments from the Editor and reviewers that helped improved the quality of the original submission.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization and design: N.O.O., E.J.I. and O.E.O.; Supervision and resources: E.J.I. and N.O.O.; Methodology and data curation: O.E.O. and N.O.O.; Investigation, data collection, analysis and interpretation: O.E.O., S.E.S., M.C.O. and N.O.O.; Writing -original draft: O.E.O. and N.O.O.; Writing -editing and review: O.E.O., S.E.S., M.C.O., E.S.A, E.J.I. and N.O.O.; Funding acquisition: E.J.I and O.E.O.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Falcão, V. G. O.; Carneiro, D. D. C.; Pereira, S. A.; Da Silva, M. R. D.; Candé, A. A.; Da Cunha Lima, S. T. Analyzing the Toxicity of Bisphenol-A to Microalgae for Ecotoxicological Applications. Environ. Monit. Assess. 2020, 192 (1), 8. https://doi.org/10.1007/s10661-019-7984-0.Search in Google Scholar PubMed

2. Geens, T.; Goeyens, L.; Covaci, A. Are Potential Sources for Human Exposure to Bisphenol-A Overlooked? Int. J. Hyg. Environ. Health 2011, 214 (5), 339–347. https://doi.org/10.1016/j.ijheh.2011.04.005.Search in Google Scholar PubMed

3. Jiang, D.; Chen, W.-Q.; Zeng, X.; Tang, L. Dynamic Stocks and Flows Analysis of Bisphenol A (BPA) in China: 2000–2014. Environ. Sci. Technol. 2018, 52 (6), 3706–3715. https://doi.org/10.1021/acs.est.7b05709.Search in Google Scholar PubMed

4. Wu, N. C.; Seebacher, F. Effect of the Plastic Pollutant Bisphenol A on the Biology of Aquatic Organisms: A Meta‐analysis. Glob. Change Biol. 2020, 26 (7), 3821–3833. https://doi.org/10.1111/gcb.15127.Search in Google Scholar PubMed

5. Offiong, N.-A. O.; Inam, E. J.; Edet, J. B. Preliminary Review of Sources, Fate, Analytical Challenges and Regulatory Status of Emerging Organic Contaminants in Aquatic Environments in Selected African Countries. Chem. Afr. 2019, 2 (4), 573–585. https://doi.org/10.1007/s42250-019-00079-6.Search in Google Scholar

6. Laing, L. V.; Viana, J.; Dempster, E. L.; Trznadel, M.; Trunkfield, L. A.; Uren Webster, T. M.; Van Aerle, R.; Paull, G. C.; Wilson, R. J.; Mill, J.; Santos, E. M. Bisphenol A Causes Reproductive Toxicity, Decreases Dnmt1 Transcription, and Reduces Global DNA Methylation in Breeding Zebrafish (Danio Rerio). Epigenetics 2016, 11 (7), 526–538. https://doi.org/10.1080/15592294.2016.1182272.Search in Google Scholar PubMed PubMed Central

7. Tsai, W.-T. Human Health Risk on Environmental Exposure to Bisphenol-A: A Review. J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev. 2006, 24 (2), 225–255. https://doi.org/10.1080/10590500600936482.Search in Google Scholar PubMed

8. Miah, M.; Iqbal, Z.; Lai, E. P. C. Comparative Binding of Endocrine Disrupting Compounds and Pharmaceuticals with Polydopamine- and Polypyrrole-coated Magnetic Nanoparticles. Clean Soil Air Water 2015, 43 (2), 173–181. https://doi.org/10.1002/clen.201300210.Search in Google Scholar

9. Sánchez-Avila, J.; Bonet, J.; Velasco, G.; Lacorte, S. Determination and Occurrence of Phthalates, Alkylphenols, Bisphenol A, PBDEs, PCBs and PAHs in an Industrial Sewage Grid Discharging to a Municipal Wastewater Treatment Plant. Sci. Total Environ. 2009, 407 (13), 4157–4167. https://doi.org/10.1016/j.scitotenv.2009.03.016.Search in Google Scholar PubMed

10. Jackson, J.; Sutton, R. Sources of Endocrine-Disrupting Chemicals in Urban Wastewater, Oakland, CA. Sci. Total Environ. 2008, 405 (1–3), 153–160. https://doi.org/10.1016/j.scitotenv.2008.06.033.Search in Google Scholar PubMed

11. Mirzaee, S. A.; Jaafarzadeh, N.; Gomes, H. T.; Jorfi, S.; Ahmadi, M. Magnetic Titanium/Carbon Nanotube Nanocomposite Catalyst for Oxidative Degradation of Bisphenol A from High Saline Polycarbonate Plant Effluent Using Catalytic Wet Peroxide Oxidation. Chem. Eng. J. 2019, 370, 372–386. https://doi.org/10.1016/j.cej.2019.03.202.Search in Google Scholar

12. Bertanza, G.; Papa, M.; Pedrazzani, R.; Repice, C.; Dal Grande, M. Tertiary Ozonation of Industrial Wastewater for the Removal of Estrogenic Compounds (NP and BPA): A Full-Scale Case Study. Water Sci. Technol. 2013, 68 (3), 567–574. https://doi.org/10.2166/wst.2013.282.Search in Google Scholar PubMed

13. Pothitou, P.; Voutsa, D. Endocrine Disrupting Compounds in Municipal and Industrial Wastewater Treatment Plants in Northern Greece. Chemosphere 2008, 73 (11), 1716–1723. https://doi.org/10.1016/j.chemosphere.2008.09.037.Search in Google Scholar PubMed

14. Ge, J.; Cong, J.; Sun, Y.; Li, G.; Zhou, Z.; Qian, C.; Liu, F. Determination of Endocrine Disrupting Chemicals in Surface Water and Industrial Wastewater from Beijing, China. Bull. Environ. Contam. Toxicol. 2010, 84 (4), 401–405. https://doi.org/10.1007/s00128-010-9958-3.Search in Google Scholar PubMed

15. Lee, H.-B.; Peart, T. E. Bisphenol A Contamination in Canadian Municipal and Industrial Wastewater and Sludge Samples. Water Qual. Res. J. 2000, 35 (2), 283–298. https://doi.org/10.2166/wqrj.2000.018.Search in Google Scholar

16. Wright-Walters, M.; Volz, C.; Talbott, E.; Davis, D. An Updated Weight of Evidence Approach to the Aquatic Hazard Assessment of Bisphenol A and the Derivation a New Predicted No Effect Concentration (Pnec) Using a Non-parametric Methodology. Sci. Total Environ. 2011, 409 (4), 676–685. https://doi.org/10.1016/j.scitotenv.2010.07.092.Search in Google Scholar PubMed

17. Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-Activated Tyre Pyrolysis Char. J. Environ. Chem. Eng. 2018, 6 (1), 823–833. https://doi.org/10.1016/j.jece.2018.01.002.Search in Google Scholar

18. López-Ramón, M. V.; Ocampo-Pérez, R.; Bautista-Toledo, M. I.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Sánchez-Polo, M. Removal of Bisphenols A and S by Adsorption on Activated Carbon Clothes Enhanced by the Presence of Bacteria. Sci. Total Environ. 2019, 669, 767–776. https://doi.org/10.1016/j.scitotenv.2019.03.125.Search in Google Scholar PubMed

19. Quanz, M. E.; Walker, T. R.; Oakes, K.; Willis, R. Contaminant Characterization in Wetland Media Surrounding a Pulp Mill Industrial Effluent Treatment Facility. Wetl. Ecol. Manage. 2021, 29 (2), 209–229. https://doi.org/10.1007/s11273-020-09779-0.Search in Google Scholar

20. Rajkumar, D.; Palanivelu, K. Electrochemical Treatment of Industrial Wastewater. J. Hazard. Mater. 2004, 113 (1–3), 123–129. https://doi.org/10.1016/j.jhazmat.2004.05.039.Search in Google Scholar PubMed

21. Chandrappa, R.; Das, D. B. Sustainable Water Engineering: Theory And Practice, 1st ed.; Chichester, West Sussex, UK: Wiley, 2014.10.1002/9781118541036Search in Google Scholar

22. Chanworrawoot, K.; Hunsom, M. Treatment of Wastewater from Pulp and Paper Mill Industry by Electrochemical Methods in Membrane Reactor. J. Environ. Manage. 2012, 113, 399–406. https://doi.org/10.1016/j.jenvman.2012.09.021.Search in Google Scholar PubMed

23. El-Gohary, F.; El-Ela, S. A.; Nasr, F.; El-Kamah, H.; Wahaab, R. A. Industrial Wastewater Management: Case Study. Int. J. Environ. Stud. 1998, 56 (1), 29–39. https://doi.org/10.1080/00207239808711193.Search in Google Scholar

24. Abdeljaoued, A.; Ruiz, B. L.; Tecle, Y.-E.; Langner, M.; Bonakdar, N.; Bleyer, G.; Stenner, P.; Vogel, N. Efficient Removal of Nanoplastics from Industrial Wastewater through Synergetic Electrophoretic Deposition and Particle-Stabilized Foam Formation. Nat. Commun. 2024, 15 (1), 5437. https://doi.org/10.1038/s41467-024-48142-2.Search in Google Scholar PubMed PubMed Central

25. Onaizi, S. A.; Alshabib, M. The Degradation of Bisphenol A by Laccase: Effect of Biosurfactant Addition on the Reaction Kinetics under Various Conditions. Sep. Purif. Technol. 2021, 257, 117785. https://doi.org/10.1016/j.seppur.2020.117785.Search in Google Scholar

26. Wang, W.; Wang, X.; Xing, J.; Gong, Q.; Wang, H.; Wang, J.; Chen, Z.; Ai, Y.; Wang, X. Multi-Heteroatom Doped Graphene-like Carbon Nanospheres with 3D Inverse Opal Structure: A Promising Bisphenol-A Remediation Material. Environ. Sci.: Nano 2019, 6 (3), 809–819. https://doi.org/10.1039/C8EN01196F.Search in Google Scholar

27. Zhao, L.; Ji, Y.; Kong, D.; Lu, J.; Zhou, Q.; Yin, X. Simultaneous Removal of Bisphenol A and Phosphate in Zero-Valent Iron Activated Persulfate Oxidation Process. Chem. Eng. J. 2016, 303, 458–466. https://doi.org/10.1016/j.cej.2016.06.016.Search in Google Scholar

28. Colombo, A.; Cappelletti, G.; Ardizzone, S.; Biraghi, I.; Bianchi, C. L.; Meroni, D.; Pirola, C.; Spadavecchia, F. Bisphenol A Endocrine Disruptor Complete Degradation Using TiO2 Photocatalysis with Ozone. Environ. Chem. Lett. 2012, 10 (1), 55–60. https://doi.org/10.1007/s10311-011-0328-0.Search in Google Scholar

29. Alshabib, M.; Onaizi, S. A. Enzymatic Remediation of Bisphenol A from Wastewaters: Effects of Biosurfactant, Anionic, Cationic, Nonionic, and Polymeric Additives. Water Air Soil Pollut 2020, 231 (8), 428. https://doi.org/10.1007/s11270-020-04806-5.Search in Google Scholar

30. Liu, N.; Liang, G.; Dong, X.; Qi, X.; Kim, J.; Piao, Y. Stabilized Magnetic Enzyme Aggregates on Graphene Oxide for High Performance Phenol and Bisphenol A Removal. Chem. Eng. J. 2016, 306, 1026–1034. https://doi.org/10.1016/j.cej.2016.08.012.Search in Google Scholar

31. Chmayssem, A.; Taha, S.; Hauchard, D. Scaled-up Electrochemical Reactor with a Fixed Bed Three-Dimensional Cathode for Electro-Fenton Process: Application to the Treatment of Bisphenol A. Electrochim. Acta 2017, 225, 435–442. https://doi.org/10.1016/j.electacta.2016.12.183.Search in Google Scholar

32. Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, R. L.; Bensitel, M.; Brahmi, R. Toward New Benchmark Adsorbents: Preparation and Characterization of Activated Carbon from Argan Nut Shell for Bisphenol A Removal. Environ. Sci. Pollut. Res. 2018, 25 (2), 1869–1882. https://doi.org/10.1007/s11356-017-0634-6.Search in Google Scholar PubMed

33. Sharma, J.; Mishra, I. M.; Dionysiou, D. D.; Kumar, V. Oxidative Removal of Bisphenol A by UV-C/Peroxymonosulfate (PMS): Kinetics, Influence of Co-existing Chemicals and Degradation Pathway. Chem. Eng. J. 2015, 276, 193–204. https://doi.org/10.1016/j.cej.2015.04.021.Search in Google Scholar

34. Torres, R. A.; Pétrier, C.; Combet, E.; Moulet, F.; Pulgarin, C. Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment. Environ. Sci. Technol. 2007, 41 (1), 297–302. https://doi.org/10.1021/es061440e.Search in Google Scholar PubMed

35. Xie, Y.; Li, P.; Zeng, Y.; Li, X.; Xiao, Y.; Wang, Y.; Zhang, Y. Thermally Treated Fungal Manganese Oxides for Bisphenol A Degradation Using Sulfate Radicals. Chem. Eng. J. 2018, 335, 728–736. https://doi.org/10.1016/j.cej.2017.11.025.Search in Google Scholar

36. Thiruvenkatachari, R.; Ouk Kwon, T.; Shik Moon, I. Application of Slurry Type Photocatalytic Oxidation-Submerged Hollow Fiber Microfiltration Hybrid System for the Degradation of Bisphenol A (BPA). Sep. Sci. Technol. 2005, 40 (14), 2871–2888. https://doi.org/10.1080/01496390500333160.Search in Google Scholar

37. Xiao, K.; Liang, H.; Chen, S.; Yang, B.; Zhang, J.; Li, J. Enhanced Photoelectrocatalytic Degradation of Bisphenol A and Simultaneous Production of Hydrogen Peroxide in Saline Wastewater Treatment. Chemosphere 2019, 222, 141–148. https://doi.org/10.1016/j.chemosphere.2019.01.109.Search in Google Scholar PubMed

38. Mei, P.; Wang, H.; Guo, H.; Zhang, N.; Ji, S.; Ma, Y.; Xu, J.; Li, Y.; Alsulami, H.; Alhodaly, M. S.; Hayat, T.; Sun, Y. The Enhanced Photodegradation of Bisphenol A by TiO2/C3N4 Composites. Environ. Res. 2020, 182, . https://doi.org/10.1016/j.envres.2019.109090.Search in Google Scholar PubMed

39. Gong, Y.; Zhao, X.; Zhang, H.; Yang, B.; Xiao, K.; Guo, T.; Zhang, J.; Shao, H.; Wang, Y.; Yu, G. MOF-Derived Nitrogen Doped Carbon Modified G-C3n4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation. Appl. Catal., B 2018, 233, 35–45. https://doi.org/10.1016/j.apcatb.2018.03.077.Search in Google Scholar

40. Murray, H. H. Applied Clay Mineralogy Today and Tomorrow. Clay Miner. 1999, 34 (1), 39–49. https://doi.org/10.1180/000985599546055.Search in Google Scholar

41. Sarkar, B.; Xi, Y.; Megharaj, M.; Krishnamurti, G. S. R.; Bowman, M.; Rose, H.; Naidu, R. Bioreactive Organoclay: A New Technology for Environmental Remediation. Crit. Rev. Env. Sci. Technol. 2012, 42 (5), 435–488. https://doi.org/10.1080/10643389.2010.518524.Search in Google Scholar

42. Yanushevska, O. I.; Dontsova, T. A.; Aleksyk, A. I.; Vlasenko, N. V.; Didenko, O. Z.; Nypadymka, A. S. Surface and Structural Properties of Clay Materials Based on Natural Saponite. Clays Clay Miner. 2020, 68 (5), 465–475. https://doi.org/10.1007/s42860-020-00088-4.Search in Google Scholar

43. Sokol, H.; Sprynskyy, M.; Ganzyuk, A.; Raks, V.; Buszewski, B. Structural, Mineral and Elemental Composition Features of Iron-Rich Saponite Clay from Tashkiv Deposit (Ukraine). Colloid. Interfaces 2019, 3 (1), 10. https://doi.org/10.3390/colloids3010010.Search in Google Scholar

44. Orta, M. D. M.; Martín, J.; Santos, J. L.; Aparicio, I.; Medina-Carrasco, S.; Alonso, E. Biopolymer-Clay Nanocomposites as Novel and Ecofriendly Adsorbents for Environmental Remediation. Appl. Clay Sci. 2020, 198, . https://doi.org/10.1016/j.clay.2020.105838.Search in Google Scholar

45. Mukhopadhyay, R.; Bhaduri, D.; Sarkar, B.; Rusmin, R.; Hou, D.; Khanam, R.; Sarkar, S.; Kumar Biswas, J.; Vithanage, M.; Bhatnagar, A.; Ok, Y. S. Clay–Polymer Nanocomposites: Progress and Challenges for Use in Sustainable Water Treatment. J. Hazard. Mater. 2020, 383, . https://doi.org/10.1016/j.jhazmat.2019.121125.Search in Google Scholar PubMed

46. Ma, Y.; Lv, L.; Guo, Y.; Fu, Y.; Shao, Q.; Wu, T.; Guo, S.; Sun, K.; Guo, X.; Wujcik, E. K.; Guo, Z. Porous Lignin Based Poly (Acrylic Acid)/Organo-Montmorillonite Nanocomposites: Swelling Behaviors and Rapid Removal of Pb (II) Ions. Polymer 2017, 128, 12–23. https://doi.org/10.1016/j.polymer.2017.09.009.Search in Google Scholar

47. Wang, H.; Zhang, H.; Jiang, J.-Q.; Ma, X. Adsorption of Bisphenol A onto Cationic-Modified Zeolite. Desalin. Water Treat. 2016, 57 (54), 26299–26306. https://doi.org/10.1080/19443994.2016.1172265.Search in Google Scholar

48. Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D. Magnetic Clay as Catalyst Applied to Organics Degradation in a Combined Adsorption and Fenton-like Process. Chem. Eng. J. 2019, 373, 140–149. https://doi.org/10.1016/j.cej.2019.05.030.Search in Google Scholar

49. Mu, C.; Zhang, Y.; Cui, W.; Liang, Y.; Zhu, Y. Removal of Bisphenol A over a Separation Free 3D Ag 3 PO 4 -Graphene Hydrogel via an Adsorption-Photocatalysis Synergy. Appl. Catal., B 2017, 212, 41–49. https://doi.org/10.1016/j.apcatb.2017.04.018.Search in Google Scholar

50. Mukhopadhyay, R.; Manjaiah, K. M.; Datta, S. C.; Yadav, R. K.; Sarkar, B. Inorganically Modified Clay Minerals: Preparation, Characterization, and Arsenic Adsorption in Contaminated Water and Soil. Appl. Clay Sci. 2017, 147, 1–10. https://doi.org/10.1016/j.clay.2017.07.017.Search in Google Scholar

51. Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving Superior Electromagnetic Wave Absorbers through the Novel Metal-Organic Frameworks Derived Magnetic Porous Carbon Nanorods. Carbon 2019, 145, 433–444. https://doi.org/10.1016/j.carbon.2019.01.028.Search in Google Scholar

52. Men, X.; Guo, Q.; Meng, B.; Ren, S.; Shen, B. Adsorption of Bisphenol A in Aqueous Solution by Composite Bentonite with Organic Moity. Microporous Mesoporous Mater. 2020, 308, 110450. https://doi.org/10.1016/j.micromeso.2020.110450.Search in Google Scholar

53. Xu, Y.; Khan, M. A.; Wang, F.; Xia, M.; Lei, W. Novel Multi Amine-Containing Gemini Surfactant Modified Montmorillonite as Adsorbents for Removal of Phenols. Appl. Clay Sci. 2018, 162, 204–213. https://doi.org/10.1016/j.clay.2018.06.023.Search in Google Scholar

54. Bao, T.; Damtie, M. M.; Hosseinzadeh, A.; Wei, W.; Jin, J.; Phong Vo, H. N.; Ye, J. S.; Liu, Y.; Wang, X. F.; Yu, Z. M.; Chen, Z. J.; Wu, K.; Frost, R. L.; Ni, B.-J. Bentonite-Supported Nano Zero-Valent Iron Composite as a Green Catalyst for Bisphenol A Degradation: Preparation, Performance, and Mechanism of Action. J. Environ. Manage. 2020, 260, 110105. https://doi.org/10.1016/j.jenvman.2020.110105.Search in Google Scholar PubMed

55. Cudjoe, E.; Younesi, M.; Cudjoe, E.; Akkus, O.; Rowan, S. J. Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction. Biomacromolecules 2017, 18 (4), 1259–1267. https://doi.org/10.1021/acs.biomac.7b00005.Search in Google Scholar PubMed

56. Wang, Y.; Chi, B.; Li, M.; Wei, W.; Wang, Y.; Chen, D. Synthesis of Sulfonated Polystyrene Sphere Based Magnesium Silicate and its Selective Removal for Bisphenol A. Surf. Interfaces 2019, 14, 9–14. https://doi.org/10.1016/j.surfin.2018.10.011.Search in Google Scholar

57. Cao, Y.; Zhou, G.; Zhou, R.; Wang, C.; Chi, B.; Wang, Y.; Hua, C.; Qiu, J.; Jin, Y.; Wu, S. Green Synthesis of Reusable Multifunctional γ-Fe2O3/Bentonite Modified by Doped TiO2 Hollow Spherical Nanocomposite for Removal of BPA. Sci. Total Environ. 2020, 708, 134669. https://doi.org/10.1016/j.scitotenv.2019.134669.Search in Google Scholar PubMed

58. Phuekphong, A. F.; Imwiset, K. J.; Ogawa, M. Designing Nanoarchitecture for Environmental Remediation Based on the Clay Minerals as Building Block. J. Hazard. Mater. 2020, 399, 122888. https://doi.org/10.1016/j.jhazmat.2020.122888.Search in Google Scholar PubMed

59. Rytwo, G. Securing the Future: Clay-Based Solutions for a Comprehensive and Sustainable Potable-Water Supply System. Clays Clay Miner. 2018, 66 (4), 315–328. https://doi.org/10.1346/CCMN.2018.064114.Search in Google Scholar

60. Lambert, J.-F. Organic Pollutant Adsorption on Clay Minerals. In Developments in Clay Science; Amsterdam, Netherlands: Elsevier, Vol. 9, 2018; pp 195–253.10.1016/B978-0-08-102432-4.00007-XSearch in Google Scholar

61. Mccabe, R. W.; Adams, J. M. Clay Minerals as Catalysts. In Developments in Clay Science; Amsterdam, Netherlands: Elsevier, Vol. 5, 2013; pp 491–538.10.1016/B978-0-08-098259-5.00019-6Search in Google Scholar

62. Nagendrappa, G.; Chowreddy, R. R. Organic Reactions Using Clay and Clay-Supported Catalysts: A Survey of Recent Literature. Catal. Surv. Asia 2021, 25 (3), 231–278. https://doi.org/10.1007/s10563-021-09333-9.Search in Google Scholar

63. Basiony, M. S.; Gaber, S. E.; Ibrahim, H.; Elshehy, E. A. Synthesis and Characterization of Al-Pillared Bentonite for Remediation of Chlorinated Pesticide-Contaminated Water. Clays Clay Miner. 2020, 68 (3), 197–210. https://doi.org/10.1007/s42860-020-00072-y.Search in Google Scholar

64. Park, Y.; Sun, Z.; Ayoko, G. A.; Frost, R. L. Bisphenol A Sorption by Organo-Montmorillonite: Implications for the Removal of Organic Contaminants from Water. Chemosphere 2014, 107, 249–256. https://doi.org/10.1016/j.chemosphere.2013.12.050.Search in Google Scholar PubMed

65. Irshidat, M. R.; Al-Saleh, M. H. Thermal Performance and Fire Resistance of Nanoclay Modified Cementitious Materials. Constr. Build. Mater. 2018, 159, 213–219. https://doi.org/10.1016/j.conbuildmat.2017.10.127.Search in Google Scholar

66. Choudalakis, G.; Gotsis, A. D. Permeability of Polymer/Clay Nanocomposites: A Review. Eur. Polym. J. 2009, 45 (4), 967–984. https://doi.org/10.1016/j.eurpolymj.2009.01.027.Search in Google Scholar

67. Carretero, M. I.; Pozo, M. Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients. Appl. Clay Sci. 2010, 47 (3–4), 171–181. https://doi.org/10.1016/j.clay.2009.10.016.Search in Google Scholar

68. Shahidi, S.; Ghoranneviss, M. Effect of Plasma Pretreatment Followed by Nanoclay Loading on Flame Retardant Properties of Cotton Fabric. J. Fusion Energy 2014, 33 (1), 88–95. https://doi.org/10.1007/s10894-013-9645-6.Search in Google Scholar

69. Panda, A. K.; Mishra, B. G.; Mishra, D. K.; Singh, R. K. Effect of Sulphuric Acid Treatment on the Physico-Chemical Characteristics of Kaolin Clay. Colloids Surf., A 2010, 363 (1–3), 98–104. https://doi.org/10.1016/j.colsurfa.2010.04.022.Search in Google Scholar

70. Owabor, C. N.; M. Ono, U.; Isuekevbo, A. Enhanced Sorption of Naphthalene onto a Modified Clay Adsorbent: Effect of Acid, Base and Salt Modifications of Clay on Sorption Kinetics. Adv. Chem. Eng. Sci. 2012, 2 (3), 330–335. https://doi.org/10.4236/aces.2012.23038.Search in Google Scholar

71. Lakevičs, V.; Stepanova, V.; Skuja, I.; Dušenkova, I.; Ruplis, A. Influence of Alkali and Acidic Treatment on Sorption Properties of Latvian Illite Clays. Key Eng. Mater. 2014, 604, 71–74. https://doi.org/10.4028/www.scientific.net/KEM.604.71.Search in Google Scholar

72. Ismadji, S.; Soetaredjo, F. E.; Ayucitra, A. Modification of Clay Minerals for Adsorption Purpose. In Clay Materials for Environmental Remediation; SpringerBriefs in Molecular Science; Springer International Publishing: Cham, 2015; pp 39–56.10.1007/978-3-319-16712-1_3Search in Google Scholar

73. Sandy; Maramis, V.; Kurniawan, A.; Ayucitra, A.; Sunarso, J.; Ismadji, S. Removal of Copper Ions from Aqueous Solution by Adsorption Using LABORATORIES-Modified Bentonite (Organo-Bentonite). Front. Chem. Sci. Eng. 2012, 6 (1), 58–66. https://doi.org/10.1007/s11705-011-1160-6.Search in Google Scholar

74. Nathaniel, E.; Kurniawan, A.; Soeteredjo, F. E.; Ismadji, S. Organo-Bentonite for the Adsorption of Pb(II) from Aqueous Solution: Temperature Dependent Parameters of Several Adsorption Equations. Desalin. Water Treat. 2011, 36 (1–3), 280–288. https://doi.org/10.5004/dwt.2011.2572.Search in Google Scholar

75. Anggraini, M.; Kurniawan, A.; Ong, L. K.; Martin, M. A.; Liu, J.-C.; Soetaredjo, F. E.; Indraswati, N.; Ismadji, S. Antibiotic Detoxification from Synthetic and Real Effluents Using a Novel MTAB Surfactant-Montmorillonite (Organoclay) Sorbent. RSC Adv. 2014, 4 (31), 16298–16311. https://doi.org/10.1039/C4RA00328D.Search in Google Scholar

76. Singla, P.; Mehta, R.; Upadhyay, S. N. Clay Modification by the Use of Organic Cations. Green Sustain. Chem. 2012, 02 (01), 21–25. https://doi.org/10.4236/gsc.2012.21004.Search in Google Scholar

77. He, H.; Ma, Y.; Zhu, J.; Yuan, P.; Qing, Y. Organoclays Prepared from Montmorillonites with Different Cation Exchange Capacity and Surfactant Configuration. Appl. Clay Sci. 2010, 48 (1–2), 67–72. https://doi.org/10.1016/j.clay.2009.11.024.Search in Google Scholar

78. Kan, T.; Jiang, X.; Zhou, L.; Yang, M.; Duan, M.; Liu, P.; Jiang, X. Removal of Methyl Orange from Aqueous Solutions Using a Bentonite Modified with a New Gemini Surfactant. Appl. Clay Sci. 2011, 54 (2), 184–187. https://doi.org/10.1016/j.clay.2011.07.009.Search in Google Scholar

79. Zhu, J.; Wang, T.; Zhu, R.; Ge, F.; Wei, J.; Yuan, P.; He, H. Novel Polymer/Surfactant Modified Montmorillonite Hybrids and the Implications for the Treatment of Hydrophobic Organic Compounds in Wastewaters. Appl. Clay Sci. 2011, 51 (3), 317–322. https://doi.org/10.1016/j.clay.2010.12.016.Search in Google Scholar

80. Rathnayake, S. I.; Xi, Y.; Frost, R. L.; Ayoko, G. A. Environmental Applications of Inorganic–Organic Clays for Recalcitrant Organic Pollutants Removal: Bisphenol A. J. Colloid Interface Sci. 2016, 470, 183–195. https://doi.org/10.1016/j.jcis.2016.02.034.Search in Google Scholar PubMed

81. Phuekphong, A. F.; Imwiset, K. J.; Ogawa, M. Organically Modified Bentonite as an Efficient and Reusable Adsorbent for Triclosan Removal from Water. Langmuir 2020, 36 (31), 9025–9034. https://doi.org/10.1021/acs.langmuir.0c00407.Search in Google Scholar PubMed

82. Phuekphong, A.; Imwiset, K.; Ogawa, M. Adsorption of Triclosan onto Organically Modified-Magadiite and Bentonite. J. Inorg. Organomet. Polym. 2021, 31 (5), 1902–1911. https://doi.org/10.1007/s10904-021-01919-0.Search in Google Scholar

83. Suwandi, A. C.; Indraswati, N.; Ismadji, S. Adsorption of N-Methylated Diaminotriphenilmethane Dye (Malachite Green) on Natural Rarasaponin Modified Kaolin. Desalin. Water Treat. 2012, 41 (1–3), 342–355. https://doi.org/10.1080/19443994.2012.664738.Search in Google Scholar

84. Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination. J. Am. Chem. Soc. 2013, 135 (47), 17853–17861. https://doi.org/10.1021/ja408121p.Search in Google Scholar PubMed

85. Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8 (9), 1696. https://doi.org/10.3390/app8091696.Search in Google Scholar

86. Cao, F.; Bai, P.; Li, H.; Ma, Y.; Deng, X.; Zhao, C. Preparation of Polyethersulfone–Organophilic Montmorillonite Hybrid Particles for the Removal of Bisphenol A. J. Hazard. Mater. 2009, 162 (2–3), 791–798. https://doi.org/10.1016/j.jhazmat.2008.05.102.Search in Google Scholar PubMed

87. Eğri, Ö.; Salimi, K.; Eğri, S.; Pişkin, E.; Rzayev, Z. M. O. Fabrication and Characterization of Novel Starch-Grafted Poly L -Lactic Acid/Montmorillonite Organoclay Nanocomposites. Carbohydr. Polym. 2016, 137, 111–118. https://doi.org/10.1016/j.carbpol.2015.10.043.Search in Google Scholar PubMed

88. Su, L.; Zeng, X.; He, H.; Tao, Q.; Komarneni, S. Preparation of Functionalized Kaolinite/Epoxy Resin Nanocomposites with Enhanced Thermal Properties. Appl. Clay Sci. 2017, 148, 103–108. https://doi.org/10.1016/j.clay.2017.08.017.Search in Google Scholar

89. Cherifi, Z.; Boukoussa, B.; Zaoui, A.; Belbachir, M.; Meghabar, R. Structural, Morphological and Thermal Properties of Nanocomposites Poly(GMA)/Clay Prepared by Ultrasound and In-Situ Polymerization. Ultrason. Sonochem. 2018, 48, 188–198. https://doi.org/10.1016/j.ultsonch.2018.05.027.Search in Google Scholar PubMed

90. Asensio, M.; Herrero, M.; Núñez, K.; Gallego, R.; Merino, J. C.; Pastor, J. M. In Situ Polymerization of Isotactic Polypropylene Sepiolite Nanocomposites and its Copolymers by Metallocene Catalysis. Eur. Polym. J. 2018, 100, 278–289. https://doi.org/10.1016/j.eurpolymj.2018.01.034.Search in Google Scholar

91. Ortiz-Martínez, K.; Reddy, P.; Cabrera-Lafaurie, W. A.; Román, F. R.; Hernández-Maldonado, A. J. Single and Multi-Component Adsorptive Removal of Bisphenol A and 2,4-Dichlorophenol from Aqueous Solutions with Transition Metal Modified Inorganic–Organic Pillared Clay Composites: Effect of pH and Presence of Humic Acid. J. Hazard. Mater. 2016, 312, 262–271. https://doi.org/10.1016/j.jhazmat.2016.03.073.Search in Google Scholar PubMed

92. Bai, Y.; Hong, J. Preparation of a Novel Millet Straw Biochar-Bentonite Composite and its Adsorption Property of Hg2+ in Aqueous Solution. Materials 2021, 14 (5), 1117. https://doi.org/10.3390/ma14051117.Search in Google Scholar PubMed PubMed Central

93. Liu, C.; Wu, P.; Zhu, Y.; Tran, L. Simultaneous Adsorption of Cd2+ and BPA on Amphoteric Surfactant Activated Montmorillonite. Chemosphere 2016, 144, 1026–1032. https://doi.org/10.1016/j.chemosphere.2015.09.063.Search in Google Scholar PubMed

94. Jović-Jovičić, N.; Mojović, M.; Stanković, D.; Nedić-Vasiljević, B.; Milutinović-Nikolić, A.; Banković, P.; Mojović, Z. Characterization and Electrochemical Properties of Organomodified and Corresponding Derived Carbonized Clay. Electrochim. Acta 2019, 296, 387–396. https://doi.org/10.1016/j.electacta.2018.11.031.Search in Google Scholar

95. Seddighi, H.; Khodadadi Darban, A.; Khanchi, A.; Fasihi, J.; Koleini, J. L. D. H. Mg/Al:2)@montmorillonite Nanocomposite as a Novel Anion-Exchanger to Adsorb Uranyl Ion from Carbonate-Containing Solutions. J. Radioanal. Nucl. Chem. 2017, 314 (1), 415–427. https://doi.org/10.1007/s10967-017-5387-7.Search in Google Scholar

96. Chen, R. S.; Ahmad, S.; Gan, S. Characterization of Recycled Thermoplastics-Based Nanocomposites: Polymer-Clay Compatibility, Blending Procedure, Processing Condition, and Clay Content Effects. Compos., Part B 2017, 131, 91–99. https://doi.org/10.1016/j.compositesb.2017.07.057.Search in Google Scholar

97. Akl, M. Synthesis and Characterization of Polymer Supported Organoclay Nanoparticles. Egypt. J. Chem. 2021, 64 (5), 2315–2324. https://doi.org/10.21608/ejchem.2021.57889.3244.Search in Google Scholar

98. Imwiset, K. J.; Hayakawa, T.; Fukushima, Y.; Yamada, T.; Ogawa, M. Novel Flexible Supramolecular Assembly of Dioleyldimethylammonium Ion in a Two-Dimensional Nanospace Studied by Neutron Scattering. Langmuir 2019, 35 (43), 13977–13982. https://doi.org/10.1021/acs.langmuir.9b02504.Search in Google Scholar PubMed

99. Raji, M.; Mekhzoum, M. E. M.; Rodrigue, D.; Qaiss, A. E. K.; Bouhfid, R. Effect of Silane Functionalization on Properties of Polypropylene/Clay Nanocomposites. Compos., Part B 2018, 146, 106–115. https://doi.org/10.1016/j.compositesb.2018.04.013.Search in Google Scholar

100. Wan, D.; Chen, Y.; Shi, Y.; Liu, Y.; Xiao, S. Effective Adsorption of Bisphenol A from Aqueous Solution over a Novel Mesoporous Carbonized Material Based on Spent Bleaching Earth. Environ. Sci. Pollut. Res. 2021, 28 (29), 40035–40048. https://doi.org/10.1007/s11356-021-13596-0.Search in Google Scholar PubMed

101. Zheng, S.; Sun, Z.; Park, Y.; Ayoko, G. A.; Frost, R. L. Removal of Bisphenol A from Wastewater by Ca-Montmorillonite Modified with Selected Surfactants. Chem. Eng. J. 2013, 234, 416–422. https://doi.org/10.1016/j.cej.2013.08.115.Search in Google Scholar

102. Liu, C.; Wu, P.; Tran, L.; Zhu, N.; Dang, Z. Organo-Montmorillonites for Efficient and Rapid Water Remediation: Sequential and Simultaneous Adsorption of Lead and Bisphenol A. Environ. Chem. 2018, 15 (5), 286. https://doi.org/10.1071/EN18057.Search in Google Scholar

103. Liao, Z.; Dai, S.; Long, S.; Yu, Y.; Ali, J.; Wang, H.; Chen, Z.; Chen, Z. Pd Based In Situ AOPs with Heterogeneous Catalyst of FeMgAl Layered Double Hydrotalcite for the Degradation of Bisphenol A and Landfill Leachate through Multiple Pathways. Environ. Sci. Pollut. Res. 2018, 25 (35), 35623–35636. https://doi.org/10.1007/s11356-018-3454-4.Search in Google Scholar PubMed

104. Li, Y.; Jin, F.; Wang, C.; Chen, Y.; Wang, Q.; Zhang, W.; Wang, D. Modification of Bentonite with Cationic Surfactant for the Enhanced Retention of Bisphenol A from Landfill Leachate. Environ. Sci. Pollut. Res. 2015, 22 (11), 8618–8628. https://doi.org/10.1007/s11356-014-4068-0.Search in Google Scholar PubMed

105. Garikoé, I.; Sorgho, B.; Yaméogo, A.; Guel, B.; Andala, D. Removal of Bisphenol A by Adsorption on Organically Modified Clays from Burkina Faso. Biorem. J. 2021, 25 (1), 22–47. https://doi.org/10.1080/10889868.2020.1842321.Search in Google Scholar

106. Tiwari, D.; Lee, S. M.; Thanhmingliana, T. Hybrid Materials in the Decontamination of Bisphenol A from Aqueous Solutions. RSC Adv. 2014, 10, 1039. C4RA06793B https://doi.org/10.1039/C4RA06793B.Search in Google Scholar

107. Wang, Z.-M.; Ooga, H.; Hirotsu, T.; Wang, W.-L.; Wu, Q. Y.; Hu, H.-Y. Matrix-Enhanced Adsorption Removal of Trace BPA by Controlling the Interlayer Hydrophobic Environment of Montmorillonite. Appl. Clay Sci. 2015, 104, 81–87. https://doi.org/10.1016/j.clay.2014.11.011.Search in Google Scholar

108. Sasai, R.; Watanabe, R.; Yamada, T. Preparation and Characterization of Titania- and Organo-Pillared Clay Hybrid Photocatalysts Capable of Oxidizing Aqueous Bisphenol A under Visible Light. Appl. Clay Sci. 2014, 93–94, 72–77. https://doi.org/10.1016/j.clay.2014.02.023.Search in Google Scholar

109. Liu, S.; Wu, P.; Chen, M.; Yu, L.; Kang, C.; Zhu, N.; Dang, Z. Amphoteric Modified Vermiculites as Adsorbents for Enhancing Removal of Organic Pollutants: Bisphenol A and Tetrabromobisphenol A. Environ. Pollut. 2017, 228, 277–286. https://doi.org/10.1016/j.envpol.2017.03.082.Search in Google Scholar PubMed

110. Zhao, Z.; Fu, D.; Zhang, B. Novel Molecularly Imprinted Polymer Prepared by Palygorskite as Support for Selective Adsorption of Bisphenol A in Aqueous Solution. Desalin. Water Treat. 2016, 57 (27), 12433–12442. https://doi.org/10.1080/19443994.2015.1052989.Search in Google Scholar

111. Wang, L.-C.; Ni, X.; Cao, Y.-H.; Cao, G. Adsorption Behavior of Bisphenol A on CTAB-Modified Graphite. Appl. Surf. Sci. 2018, 428, 165–170. https://doi.org/10.1016/j.apsusc.2017.07.093.Search in Google Scholar

112. Salehinia, S.; Ghoreishi, S. M.; Maya, F.; Cerdà, V. Hydrophobic Magnetic Montmorillonite Composite Material for the Efficient Adsorption and Microextraction of Bisphenol A from Water Samples. J. Environ. Chem. Eng. 2016, 4 (4), 4062–4071. https://doi.org/10.1016/j.jece.2016.08.007.Search in Google Scholar

113. Yang, Q.; Gao, M.; Luo, Z.; Yang, S. Enhanced Removal of Bisphenol A from Aqueous Solution by Organo-Montmorillonites Modified with Novel Gemini Pyridinium Surfactants Containing Long Alkyl Chain. Chem. Eng. J. 2016, 285, 27–38. https://doi.org/10.1016/j.cej.2015.09.114.Search in Google Scholar

114. Shabtai, I. A.; Mishael, Y. G. Polycyclodextrin–Clay Composites: Regenerable Dual-Site Sorbents for Bisphenol A Removal from Treated Wastewater. ACS Appl. Mater. Interfaces 2018, 10 (32), 27088–27097. https://doi.org/10.1021/acsami.8b09715.Search in Google Scholar PubMed

115. Drozd, D.; Szczubiałka, K.; Skiba, M.; Kepczynski, M.; Nowakowska, M. Porphyrin–Nanoclay Photosensitizers for Visible Light Induced Oxidation of Phenol in Aqueous Media. J. Phys. Chem. C 2014, 118 (17), 9196–9202. https://doi.org/10.1021/jp500024h.Search in Google Scholar

116. Liu, Y.; Wu, F.; Deng, N. Effect of Organic Carboxylic Acids on Bisphenol A Photocatalytic Degradation by Montmorillonite Minerals. J. Southeast Univ. (Nat. Sci. Ed.) 2009, 39 (S2), 283–287.Search in Google Scholar

117. Xiong, Z.; Xu, Y.; Zhu, L.; Zhao, J. Photosensitized Oxidation of Substituted Phenols on Aluminum Phthalocyanine-Intercalated Organoclay. Environ. Sci. Technol. 2005, 39 (2), 651–657. https://doi.org/10.1021/es0487630.Search in Google Scholar PubMed

118. Ezzatahmadi, N.; Ayoko, G. A.; Millar, G. J.; Speight, R.; Yan, C.; Li, J.; Li, S.; Zhu, J.; Xi, Y. Clay-supported Nanoscale Zero-Valent Iron Composite Materials for the Remediation of Contaminated Aqueous Solutions: A Review. Chem. Eng. J. 2017, 312, 336–350. https://doi.org/10.1016/j.cej.2016.11.154.Search in Google Scholar

119. Sasai, R.; Sugiyama, D.; Takahashi, S.; Tong, Z.; Shichi, T.; Itoh, H.; Takagi, K. The Removal and Photodecomposition of N-Nonylphenol Using Hydrophobic Clay Incorporated with Copper-Phthalocyanine in Aqueous Media. J. Photochem. Photobiol., A 2003, 155 (1–3), 223–229. https://doi.org/10.1016/S1010-6030(02)00372-6.Search in Google Scholar

120. Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive Nanoarchitectures Based on Clays Incorporating TiO 2 and ZnO Nanoparticles. Beilstein J. Nanotechnol. 2019, 10, 1140–1156. https://doi.org/10.3762/bjnano.10.114.Search in Google Scholar PubMed PubMed Central

121. Dong, X.; Ren, B.; Sun, Z.; Li, C.; Zhang, X.; Kong, M.; Zheng, S.; Dionysiou, D. D. Monodispersed CuFe2O4 Nanoparticles Anchored on Natural Kaolinite as Highly Efficient Peroxymonosulfate Catalyst for Bisphenol A Degradation. Appl. Catal., B 2019, 253, 206–217. https://doi.org/10.1016/j.apcatb.2019.04.052.Search in Google Scholar

122. Xi, Y.; Sun, Z.; Hreid, T.; Ayoko, G. A.; Frost, R. L. Bisphenol A Degradation Enhanced by Air Bubbles via Advanced Oxidation Using In Situ Generated Ferrous Ions from Nano Zero-Valent Iron/Palygorskite Composite Materials. Chem. Eng. J. 2014, 247, 66–74. https://doi.org/10.1016/j.cej.2014.02.077.Search in Google Scholar

123. Kundu, S.; Korin Manor, N.; Radian, A. Iron–Montmorillonite–Cyclodextrin Composites as Recyclable Sorbent Catalysts for the Adsorption and Surface Oxidation of Organic Pollutants. ACS Appl. Mater. Interfaces 2020, 12 (47), 52873–52887. https://doi.org/10.1021/acsami.0c17510.Search in Google Scholar PubMed

124. Ooka, C.; Yoshida, H.; Horio, M.; Suzuki, K.; Hattori, T. Adsorptive and Photocatalytic Performance of TiO2 Pillared Montmorillonite in Degradation of Endocrine Disruptors Having Different Hydrophobicity. Appl. Catal., B 2003, 41 (3), 313–321. https://doi.org/10.1016/S0926-3373(02)00169-8.Search in Google Scholar

125. Boussouf, I.; Medjram, M. S.; Ferroudj, N.; Abramson, S. Unexpected Activity of Magnetically Separable Fenton Catalyst in Clay Slurries. Environ. Technol. 2021, 42 (1), 43–57. https://doi.org/10.1080/09593330.2019.1620865.Search in Google Scholar PubMed

126. Middea, A.; Spinelli, L. S.; Souza Jr, F. G.; Neumann, R.; Fernandes, T. L. A. P.; Gomes, O. D. F. M. Preparation and Characterization of an Organo-Palygorskite-Fe3O4 Nanomaterial for Removal of Anionic Dyes from Wastewater. Appl. Clay Sci. 2017, 139, 45–53. https://doi.org/10.1016/j.clay.2017.01.017.Search in Google Scholar

127. Wang, J.; Zhang, M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. Int. J. Environ. Res. Public Health 2020, 17 (3), 1075. https://doi.org/10.3390/ijerph17031075.Search in Google Scholar PubMed PubMed Central

128. Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Johir, Md. A. H.; Sun, L.; Asadullah, M.; Belhaj, D. Sorption of Hydrophobic Organic Contaminants on Functionalized Biochar: Protagonist Role of π-π Electron-Donor-Acceptor Interactions and Hydrogen Bonds. J. Hazard. Mater. 2018, 360, 270–278. https://doi.org/10.1016/j.jhazmat.2018.08.005.Search in Google Scholar PubMed

129. Wang, J.; Gao, M.; Shen, T.; Yu, M.; Xiang, Y.; Liu, J. Insights into the Efficient Adsorption of Rhodamine B on Tunable Organo-Vermiculites. J. Hazard. Mater. 2019, 366, 501–511. https://doi.org/10.1016/j.jhazmat.2018.12.031.Search in Google Scholar PubMed

Received: 2024-07-26
Accepted: 2024-10-14
Published Online: 2025-03-10
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0219/html?lang=en
Scroll to top button