Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents
-
Okon E. Okon
, Nnanake-Abasi O. Offiong, Solomon E. Shaibu
, Edu J. Inam, Marcellinus C. Ogudo
and Eric S. Archibong
Abstract
Bisphenol A (BPA), a widely used industrial chemical, is notorious for its bio-accumulative persistence and toxicity, posing significant threats to environmental and public health. The presence of BPA in industrial and wastewater effluents has become a growing concern, necessitating effective removal techniques. Current wastewater treatment methods often fall short in addressing the complexity of BPA contamination under different conditions, which highlights the urgent need for innovative solutions. One promising approach involves the use of clay and clay-derived materials, which have gained global recognition for wastewater remediation due to their abundance, eco-friendliness, low cost, tunability, and potential for regeneration. Recent research trends focus on the functionalisation of clay materials (FCMs), enhancing their efficiency in adsorbing, degrading, and removing emerging organic pollutants such as BPA, as well as heavy metals, pesticides, and polyaromatic hydrocarbons. The functionalisation of clays with various modifiers has been shown to improve their sorption capacity, degradation efficiency, and hydrophobicity. This review aims to systematically highlight the use of FCMs for the removal of BPA from industrial and wastewater effluents. A detailed description of enhanced clay materials and processes of BPA removal from these effluents has been presented in this study. However, to establish its position as an ideal candidate for BPA removal, more investigations are critical to adopt the best modification agent(s) and conditions for functionalisation.
Acknowledgments
Okon E. Okon acknowledges the assistance and support he received from the Department of Chemistry, University of Uyo, Uyo, Nigeria during his PhD studies. The authors acknowledge the useful comments from the Editor and reviewers that helped improved the quality of the original submission.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualization and design: N.O.O., E.J.I. and O.E.O.; Supervision and resources: E.J.I. and N.O.O.; Methodology and data curation: O.E.O. and N.O.O.; Investigation, data collection, analysis and interpretation: O.E.O., S.E.S., M.C.O. and N.O.O.; Writing -original draft: O.E.O. and N.O.O.; Writing -editing and review: O.E.O., S.E.S., M.C.O., E.S.A, E.J.I. and N.O.O.; Funding acquisition: E.J.I and O.E.O.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Falcão, V. G. O.; Carneiro, D. D. C.; Pereira, S. A.; Da Silva, M. R. D.; Candé, A. A.; Da Cunha Lima, S. T. Analyzing the Toxicity of Bisphenol-A to Microalgae for Ecotoxicological Applications. Environ. Monit. Assess. 2020, 192 (1), 8. https://doi.org/10.1007/s10661-019-7984-0.Search in Google Scholar PubMed
2. Geens, T.; Goeyens, L.; Covaci, A. Are Potential Sources for Human Exposure to Bisphenol-A Overlooked? Int. J. Hyg. Environ. Health 2011, 214 (5), 339–347. https://doi.org/10.1016/j.ijheh.2011.04.005.Search in Google Scholar PubMed
3. Jiang, D.; Chen, W.-Q.; Zeng, X.; Tang, L. Dynamic Stocks and Flows Analysis of Bisphenol A (BPA) in China: 2000–2014. Environ. Sci. Technol. 2018, 52 (6), 3706–3715. https://doi.org/10.1021/acs.est.7b05709.Search in Google Scholar PubMed
4. Wu, N. C.; Seebacher, F. Effect of the Plastic Pollutant Bisphenol A on the Biology of Aquatic Organisms: A Meta‐analysis. Glob. Change Biol. 2020, 26 (7), 3821–3833. https://doi.org/10.1111/gcb.15127.Search in Google Scholar PubMed
5. Offiong, N.-A. O.; Inam, E. J.; Edet, J. B. Preliminary Review of Sources, Fate, Analytical Challenges and Regulatory Status of Emerging Organic Contaminants in Aquatic Environments in Selected African Countries. Chem. Afr. 2019, 2 (4), 573–585. https://doi.org/10.1007/s42250-019-00079-6.Search in Google Scholar
6. Laing, L. V.; Viana, J.; Dempster, E. L.; Trznadel, M.; Trunkfield, L. A.; Uren Webster, T. M.; Van Aerle, R.; Paull, G. C.; Wilson, R. J.; Mill, J.; Santos, E. M. Bisphenol A Causes Reproductive Toxicity, Decreases Dnmt1 Transcription, and Reduces Global DNA Methylation in Breeding Zebrafish (Danio Rerio). Epigenetics 2016, 11 (7), 526–538. https://doi.org/10.1080/15592294.2016.1182272.Search in Google Scholar PubMed PubMed Central
7. Tsai, W.-T. Human Health Risk on Environmental Exposure to Bisphenol-A: A Review. J. Environ. Sci. Health., Part C Environ. Carcinog. Ecotoxicol. Rev. 2006, 24 (2), 225–255. https://doi.org/10.1080/10590500600936482.Search in Google Scholar PubMed
8. Miah, M.; Iqbal, Z.; Lai, E. P. C. Comparative Binding of Endocrine Disrupting Compounds and Pharmaceuticals with Polydopamine- and Polypyrrole-coated Magnetic Nanoparticles. Clean Soil Air Water 2015, 43 (2), 173–181. https://doi.org/10.1002/clen.201300210.Search in Google Scholar
9. Sánchez-Avila, J.; Bonet, J.; Velasco, G.; Lacorte, S. Determination and Occurrence of Phthalates, Alkylphenols, Bisphenol A, PBDEs, PCBs and PAHs in an Industrial Sewage Grid Discharging to a Municipal Wastewater Treatment Plant. Sci. Total Environ. 2009, 407 (13), 4157–4167. https://doi.org/10.1016/j.scitotenv.2009.03.016.Search in Google Scholar PubMed
10. Jackson, J.; Sutton, R. Sources of Endocrine-Disrupting Chemicals in Urban Wastewater, Oakland, CA. Sci. Total Environ. 2008, 405 (1–3), 153–160. https://doi.org/10.1016/j.scitotenv.2008.06.033.Search in Google Scholar PubMed
11. Mirzaee, S. A.; Jaafarzadeh, N.; Gomes, H. T.; Jorfi, S.; Ahmadi, M. Magnetic Titanium/Carbon Nanotube Nanocomposite Catalyst for Oxidative Degradation of Bisphenol A from High Saline Polycarbonate Plant Effluent Using Catalytic Wet Peroxide Oxidation. Chem. Eng. J. 2019, 370, 372–386. https://doi.org/10.1016/j.cej.2019.03.202.Search in Google Scholar
12. Bertanza, G.; Papa, M.; Pedrazzani, R.; Repice, C.; Dal Grande, M. Tertiary Ozonation of Industrial Wastewater for the Removal of Estrogenic Compounds (NP and BPA): A Full-Scale Case Study. Water Sci. Technol. 2013, 68 (3), 567–574. https://doi.org/10.2166/wst.2013.282.Search in Google Scholar PubMed
13. Pothitou, P.; Voutsa, D. Endocrine Disrupting Compounds in Municipal and Industrial Wastewater Treatment Plants in Northern Greece. Chemosphere 2008, 73 (11), 1716–1723. https://doi.org/10.1016/j.chemosphere.2008.09.037.Search in Google Scholar PubMed
14. Ge, J.; Cong, J.; Sun, Y.; Li, G.; Zhou, Z.; Qian, C.; Liu, F. Determination of Endocrine Disrupting Chemicals in Surface Water and Industrial Wastewater from Beijing, China. Bull. Environ. Contam. Toxicol. 2010, 84 (4), 401–405. https://doi.org/10.1007/s00128-010-9958-3.Search in Google Scholar PubMed
15. Lee, H.-B.; Peart, T. E. Bisphenol A Contamination in Canadian Municipal and Industrial Wastewater and Sludge Samples. Water Qual. Res. J. 2000, 35 (2), 283–298. https://doi.org/10.2166/wqrj.2000.018.Search in Google Scholar
16. Wright-Walters, M.; Volz, C.; Talbott, E.; Davis, D. An Updated Weight of Evidence Approach to the Aquatic Hazard Assessment of Bisphenol A and the Derivation a New Predicted No Effect Concentration (Pnec) Using a Non-parametric Methodology. Sci. Total Environ. 2011, 409 (4), 676–685. https://doi.org/10.1016/j.scitotenv.2010.07.092.Search in Google Scholar PubMed
17. Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-Activated Tyre Pyrolysis Char. J. Environ. Chem. Eng. 2018, 6 (1), 823–833. https://doi.org/10.1016/j.jece.2018.01.002.Search in Google Scholar
18. López-Ramón, M. V.; Ocampo-Pérez, R.; Bautista-Toledo, M. I.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Sánchez-Polo, M. Removal of Bisphenols A and S by Adsorption on Activated Carbon Clothes Enhanced by the Presence of Bacteria. Sci. Total Environ. 2019, 669, 767–776. https://doi.org/10.1016/j.scitotenv.2019.03.125.Search in Google Scholar PubMed
19. Quanz, M. E.; Walker, T. R.; Oakes, K.; Willis, R. Contaminant Characterization in Wetland Media Surrounding a Pulp Mill Industrial Effluent Treatment Facility. Wetl. Ecol. Manage. 2021, 29 (2), 209–229. https://doi.org/10.1007/s11273-020-09779-0.Search in Google Scholar
20. Rajkumar, D.; Palanivelu, K. Electrochemical Treatment of Industrial Wastewater. J. Hazard. Mater. 2004, 113 (1–3), 123–129. https://doi.org/10.1016/j.jhazmat.2004.05.039.Search in Google Scholar PubMed
21. Chandrappa, R.; Das, D. B. Sustainable Water Engineering: Theory And Practice, 1st ed.; Chichester, West Sussex, UK: Wiley, 2014.10.1002/9781118541036Search in Google Scholar
22. Chanworrawoot, K.; Hunsom, M. Treatment of Wastewater from Pulp and Paper Mill Industry by Electrochemical Methods in Membrane Reactor. J. Environ. Manage. 2012, 113, 399–406. https://doi.org/10.1016/j.jenvman.2012.09.021.Search in Google Scholar PubMed
23. El-Gohary, F.; El-Ela, S. A.; Nasr, F.; El-Kamah, H.; Wahaab, R. A. Industrial Wastewater Management: Case Study. Int. J. Environ. Stud. 1998, 56 (1), 29–39. https://doi.org/10.1080/00207239808711193.Search in Google Scholar
24. Abdeljaoued, A.; Ruiz, B. L.; Tecle, Y.-E.; Langner, M.; Bonakdar, N.; Bleyer, G.; Stenner, P.; Vogel, N. Efficient Removal of Nanoplastics from Industrial Wastewater through Synergetic Electrophoretic Deposition and Particle-Stabilized Foam Formation. Nat. Commun. 2024, 15 (1), 5437. https://doi.org/10.1038/s41467-024-48142-2.Search in Google Scholar PubMed PubMed Central
25. Onaizi, S. A.; Alshabib, M. The Degradation of Bisphenol A by Laccase: Effect of Biosurfactant Addition on the Reaction Kinetics under Various Conditions. Sep. Purif. Technol. 2021, 257, 117785. https://doi.org/10.1016/j.seppur.2020.117785.Search in Google Scholar
26. Wang, W.; Wang, X.; Xing, J.; Gong, Q.; Wang, H.; Wang, J.; Chen, Z.; Ai, Y.; Wang, X. Multi-Heteroatom Doped Graphene-like Carbon Nanospheres with 3D Inverse Opal Structure: A Promising Bisphenol-A Remediation Material. Environ. Sci.: Nano 2019, 6 (3), 809–819. https://doi.org/10.1039/C8EN01196F.Search in Google Scholar
27. Zhao, L.; Ji, Y.; Kong, D.; Lu, J.; Zhou, Q.; Yin, X. Simultaneous Removal of Bisphenol A and Phosphate in Zero-Valent Iron Activated Persulfate Oxidation Process. Chem. Eng. J. 2016, 303, 458–466. https://doi.org/10.1016/j.cej.2016.06.016.Search in Google Scholar
28. Colombo, A.; Cappelletti, G.; Ardizzone, S.; Biraghi, I.; Bianchi, C. L.; Meroni, D.; Pirola, C.; Spadavecchia, F. Bisphenol A Endocrine Disruptor Complete Degradation Using TiO2 Photocatalysis with Ozone. Environ. Chem. Lett. 2012, 10 (1), 55–60. https://doi.org/10.1007/s10311-011-0328-0.Search in Google Scholar
29. Alshabib, M.; Onaizi, S. A. Enzymatic Remediation of Bisphenol A from Wastewaters: Effects of Biosurfactant, Anionic, Cationic, Nonionic, and Polymeric Additives. Water Air Soil Pollut 2020, 231 (8), 428. https://doi.org/10.1007/s11270-020-04806-5.Search in Google Scholar
30. Liu, N.; Liang, G.; Dong, X.; Qi, X.; Kim, J.; Piao, Y. Stabilized Magnetic Enzyme Aggregates on Graphene Oxide for High Performance Phenol and Bisphenol A Removal. Chem. Eng. J. 2016, 306, 1026–1034. https://doi.org/10.1016/j.cej.2016.08.012.Search in Google Scholar
31. Chmayssem, A.; Taha, S.; Hauchard, D. Scaled-up Electrochemical Reactor with a Fixed Bed Three-Dimensional Cathode for Electro-Fenton Process: Application to the Treatment of Bisphenol A. Electrochim. Acta 2017, 225, 435–442. https://doi.org/10.1016/j.electacta.2016.12.183.Search in Google Scholar
32. Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, R. L.; Bensitel, M.; Brahmi, R. Toward New Benchmark Adsorbents: Preparation and Characterization of Activated Carbon from Argan Nut Shell for Bisphenol A Removal. Environ. Sci. Pollut. Res. 2018, 25 (2), 1869–1882. https://doi.org/10.1007/s11356-017-0634-6.Search in Google Scholar PubMed
33. Sharma, J.; Mishra, I. M.; Dionysiou, D. D.; Kumar, V. Oxidative Removal of Bisphenol A by UV-C/Peroxymonosulfate (PMS): Kinetics, Influence of Co-existing Chemicals and Degradation Pathway. Chem. Eng. J. 2015, 276, 193–204. https://doi.org/10.1016/j.cej.2015.04.021.Search in Google Scholar
34. Torres, R. A.; Pétrier, C.; Combet, E.; Moulet, F.; Pulgarin, C. Bisphenol A Mineralization by Integrated Ultrasound-UV-Iron (II) Treatment. Environ. Sci. Technol. 2007, 41 (1), 297–302. https://doi.org/10.1021/es061440e.Search in Google Scholar PubMed
35. Xie, Y.; Li, P.; Zeng, Y.; Li, X.; Xiao, Y.; Wang, Y.; Zhang, Y. Thermally Treated Fungal Manganese Oxides for Bisphenol A Degradation Using Sulfate Radicals. Chem. Eng. J. 2018, 335, 728–736. https://doi.org/10.1016/j.cej.2017.11.025.Search in Google Scholar
36. Thiruvenkatachari, R.; Ouk Kwon, T.; Shik Moon, I. Application of Slurry Type Photocatalytic Oxidation-Submerged Hollow Fiber Microfiltration Hybrid System for the Degradation of Bisphenol A (BPA). Sep. Sci. Technol. 2005, 40 (14), 2871–2888. https://doi.org/10.1080/01496390500333160.Search in Google Scholar
37. Xiao, K.; Liang, H.; Chen, S.; Yang, B.; Zhang, J.; Li, J. Enhanced Photoelectrocatalytic Degradation of Bisphenol A and Simultaneous Production of Hydrogen Peroxide in Saline Wastewater Treatment. Chemosphere 2019, 222, 141–148. https://doi.org/10.1016/j.chemosphere.2019.01.109.Search in Google Scholar PubMed
38. Mei, P.; Wang, H.; Guo, H.; Zhang, N.; Ji, S.; Ma, Y.; Xu, J.; Li, Y.; Alsulami, H.; Alhodaly, M. S.; Hayat, T.; Sun, Y. The Enhanced Photodegradation of Bisphenol A by TiO2/C3N4 Composites. Environ. Res. 2020, 182, . https://doi.org/10.1016/j.envres.2019.109090.Search in Google Scholar PubMed
39. Gong, Y.; Zhao, X.; Zhang, H.; Yang, B.; Xiao, K.; Guo, T.; Zhang, J.; Shao, H.; Wang, Y.; Yu, G. MOF-Derived Nitrogen Doped Carbon Modified G-C3n4 Heterostructure Composite with Enhanced Photocatalytic Activity for Bisphenol A Degradation with Peroxymonosulfate under Visible Light Irradiation. Appl. Catal., B 2018, 233, 35–45. https://doi.org/10.1016/j.apcatb.2018.03.077.Search in Google Scholar
40. Murray, H. H. Applied Clay Mineralogy Today and Tomorrow. Clay Miner. 1999, 34 (1), 39–49. https://doi.org/10.1180/000985599546055.Search in Google Scholar
41. Sarkar, B.; Xi, Y.; Megharaj, M.; Krishnamurti, G. S. R.; Bowman, M.; Rose, H.; Naidu, R. Bioreactive Organoclay: A New Technology for Environmental Remediation. Crit. Rev. Env. Sci. Technol. 2012, 42 (5), 435–488. https://doi.org/10.1080/10643389.2010.518524.Search in Google Scholar
42. Yanushevska, O. I.; Dontsova, T. A.; Aleksyk, A. I.; Vlasenko, N. V.; Didenko, O. Z.; Nypadymka, A. S. Surface and Structural Properties of Clay Materials Based on Natural Saponite. Clays Clay Miner. 2020, 68 (5), 465–475. https://doi.org/10.1007/s42860-020-00088-4.Search in Google Scholar
43. Sokol, H.; Sprynskyy, M.; Ganzyuk, A.; Raks, V.; Buszewski, B. Structural, Mineral and Elemental Composition Features of Iron-Rich Saponite Clay from Tashkiv Deposit (Ukraine). Colloid. Interfaces 2019, 3 (1), 10. https://doi.org/10.3390/colloids3010010.Search in Google Scholar
44. Orta, M. D. M.; Martín, J.; Santos, J. L.; Aparicio, I.; Medina-Carrasco, S.; Alonso, E. Biopolymer-Clay Nanocomposites as Novel and Ecofriendly Adsorbents for Environmental Remediation. Appl. Clay Sci. 2020, 198, . https://doi.org/10.1016/j.clay.2020.105838.Search in Google Scholar
45. Mukhopadhyay, R.; Bhaduri, D.; Sarkar, B.; Rusmin, R.; Hou, D.; Khanam, R.; Sarkar, S.; Kumar Biswas, J.; Vithanage, M.; Bhatnagar, A.; Ok, Y. S. Clay–Polymer Nanocomposites: Progress and Challenges for Use in Sustainable Water Treatment. J. Hazard. Mater. 2020, 383, . https://doi.org/10.1016/j.jhazmat.2019.121125.Search in Google Scholar PubMed
46. Ma, Y.; Lv, L.; Guo, Y.; Fu, Y.; Shao, Q.; Wu, T.; Guo, S.; Sun, K.; Guo, X.; Wujcik, E. K.; Guo, Z. Porous Lignin Based Poly (Acrylic Acid)/Organo-Montmorillonite Nanocomposites: Swelling Behaviors and Rapid Removal of Pb (II) Ions. Polymer 2017, 128, 12–23. https://doi.org/10.1016/j.polymer.2017.09.009.Search in Google Scholar
47. Wang, H.; Zhang, H.; Jiang, J.-Q.; Ma, X. Adsorption of Bisphenol A onto Cationic-Modified Zeolite. Desalin. Water Treat. 2016, 57 (54), 26299–26306. https://doi.org/10.1080/19443994.2016.1172265.Search in Google Scholar
48. Xu, X.; Chen, W.; Zong, S.; Ren, X.; Liu, D. Magnetic Clay as Catalyst Applied to Organics Degradation in a Combined Adsorption and Fenton-like Process. Chem. Eng. J. 2019, 373, 140–149. https://doi.org/10.1016/j.cej.2019.05.030.Search in Google Scholar
49. Mu, C.; Zhang, Y.; Cui, W.; Liang, Y.; Zhu, Y. Removal of Bisphenol A over a Separation Free 3D Ag 3 PO 4 -Graphene Hydrogel via an Adsorption-Photocatalysis Synergy. Appl. Catal., B 2017, 212, 41–49. https://doi.org/10.1016/j.apcatb.2017.04.018.Search in Google Scholar
50. Mukhopadhyay, R.; Manjaiah, K. M.; Datta, S. C.; Yadav, R. K.; Sarkar, B. Inorganically Modified Clay Minerals: Preparation, Characterization, and Arsenic Adsorption in Contaminated Water and Soil. Appl. Clay Sci. 2017, 147, 1–10. https://doi.org/10.1016/j.clay.2017.07.017.Search in Google Scholar
51. Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving Superior Electromagnetic Wave Absorbers through the Novel Metal-Organic Frameworks Derived Magnetic Porous Carbon Nanorods. Carbon 2019, 145, 433–444. https://doi.org/10.1016/j.carbon.2019.01.028.Search in Google Scholar
52. Men, X.; Guo, Q.; Meng, B.; Ren, S.; Shen, B. Adsorption of Bisphenol A in Aqueous Solution by Composite Bentonite with Organic Moity. Microporous Mesoporous Mater. 2020, 308, 110450. https://doi.org/10.1016/j.micromeso.2020.110450.Search in Google Scholar
53. Xu, Y.; Khan, M. A.; Wang, F.; Xia, M.; Lei, W. Novel Multi Amine-Containing Gemini Surfactant Modified Montmorillonite as Adsorbents for Removal of Phenols. Appl. Clay Sci. 2018, 162, 204–213. https://doi.org/10.1016/j.clay.2018.06.023.Search in Google Scholar
54. Bao, T.; Damtie, M. M.; Hosseinzadeh, A.; Wei, W.; Jin, J.; Phong Vo, H. N.; Ye, J. S.; Liu, Y.; Wang, X. F.; Yu, Z. M.; Chen, Z. J.; Wu, K.; Frost, R. L.; Ni, B.-J. Bentonite-Supported Nano Zero-Valent Iron Composite as a Green Catalyst for Bisphenol A Degradation: Preparation, Performance, and Mechanism of Action. J. Environ. Manage. 2020, 260, 110105. https://doi.org/10.1016/j.jenvman.2020.110105.Search in Google Scholar PubMed
55. Cudjoe, E.; Younesi, M.; Cudjoe, E.; Akkus, O.; Rowan, S. J. Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction. Biomacromolecules 2017, 18 (4), 1259–1267. https://doi.org/10.1021/acs.biomac.7b00005.Search in Google Scholar PubMed
56. Wang, Y.; Chi, B.; Li, M.; Wei, W.; Wang, Y.; Chen, D. Synthesis of Sulfonated Polystyrene Sphere Based Magnesium Silicate and its Selective Removal for Bisphenol A. Surf. Interfaces 2019, 14, 9–14. https://doi.org/10.1016/j.surfin.2018.10.011.Search in Google Scholar
57. Cao, Y.; Zhou, G.; Zhou, R.; Wang, C.; Chi, B.; Wang, Y.; Hua, C.; Qiu, J.; Jin, Y.; Wu, S. Green Synthesis of Reusable Multifunctional γ-Fe2O3/Bentonite Modified by Doped TiO2 Hollow Spherical Nanocomposite for Removal of BPA. Sci. Total Environ. 2020, 708, 134669. https://doi.org/10.1016/j.scitotenv.2019.134669.Search in Google Scholar PubMed
58. Phuekphong, A. F.; Imwiset, K. J.; Ogawa, M. Designing Nanoarchitecture for Environmental Remediation Based on the Clay Minerals as Building Block. J. Hazard. Mater. 2020, 399, 122888. https://doi.org/10.1016/j.jhazmat.2020.122888.Search in Google Scholar PubMed
59. Rytwo, G. Securing the Future: Clay-Based Solutions for a Comprehensive and Sustainable Potable-Water Supply System. Clays Clay Miner. 2018, 66 (4), 315–328. https://doi.org/10.1346/CCMN.2018.064114.Search in Google Scholar
60. Lambert, J.-F. Organic Pollutant Adsorption on Clay Minerals. In Developments in Clay Science; Amsterdam, Netherlands: Elsevier, Vol. 9, 2018; pp 195–253.10.1016/B978-0-08-102432-4.00007-XSearch in Google Scholar
61. Mccabe, R. W.; Adams, J. M. Clay Minerals as Catalysts. In Developments in Clay Science; Amsterdam, Netherlands: Elsevier, Vol. 5, 2013; pp 491–538.10.1016/B978-0-08-098259-5.00019-6Search in Google Scholar
62. Nagendrappa, G.; Chowreddy, R. R. Organic Reactions Using Clay and Clay-Supported Catalysts: A Survey of Recent Literature. Catal. Surv. Asia 2021, 25 (3), 231–278. https://doi.org/10.1007/s10563-021-09333-9.Search in Google Scholar
63. Basiony, M. S.; Gaber, S. E.; Ibrahim, H.; Elshehy, E. A. Synthesis and Characterization of Al-Pillared Bentonite for Remediation of Chlorinated Pesticide-Contaminated Water. Clays Clay Miner. 2020, 68 (3), 197–210. https://doi.org/10.1007/s42860-020-00072-y.Search in Google Scholar
64. Park, Y.; Sun, Z.; Ayoko, G. A.; Frost, R. L. Bisphenol A Sorption by Organo-Montmorillonite: Implications for the Removal of Organic Contaminants from Water. Chemosphere 2014, 107, 249–256. https://doi.org/10.1016/j.chemosphere.2013.12.050.Search in Google Scholar PubMed
65. Irshidat, M. R.; Al-Saleh, M. H. Thermal Performance and Fire Resistance of Nanoclay Modified Cementitious Materials. Constr. Build. Mater. 2018, 159, 213–219. https://doi.org/10.1016/j.conbuildmat.2017.10.127.Search in Google Scholar
66. Choudalakis, G.; Gotsis, A. D. Permeability of Polymer/Clay Nanocomposites: A Review. Eur. Polym. J. 2009, 45 (4), 967–984. https://doi.org/10.1016/j.eurpolymj.2009.01.027.Search in Google Scholar
67. Carretero, M. I.; Pozo, M. Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients. Appl. Clay Sci. 2010, 47 (3–4), 171–181. https://doi.org/10.1016/j.clay.2009.10.016.Search in Google Scholar
68. Shahidi, S.; Ghoranneviss, M. Effect of Plasma Pretreatment Followed by Nanoclay Loading on Flame Retardant Properties of Cotton Fabric. J. Fusion Energy 2014, 33 (1), 88–95. https://doi.org/10.1007/s10894-013-9645-6.Search in Google Scholar
69. Panda, A. K.; Mishra, B. G.; Mishra, D. K.; Singh, R. K. Effect of Sulphuric Acid Treatment on the Physico-Chemical Characteristics of Kaolin Clay. Colloids Surf., A 2010, 363 (1–3), 98–104. https://doi.org/10.1016/j.colsurfa.2010.04.022.Search in Google Scholar
70. Owabor, C. N.; M. Ono, U.; Isuekevbo, A. Enhanced Sorption of Naphthalene onto a Modified Clay Adsorbent: Effect of Acid, Base and Salt Modifications of Clay on Sorption Kinetics. Adv. Chem. Eng. Sci. 2012, 2 (3), 330–335. https://doi.org/10.4236/aces.2012.23038.Search in Google Scholar
71. Lakevičs, V.; Stepanova, V.; Skuja, I.; Dušenkova, I.; Ruplis, A. Influence of Alkali and Acidic Treatment on Sorption Properties of Latvian Illite Clays. Key Eng. Mater. 2014, 604, 71–74. https://doi.org/10.4028/www.scientific.net/KEM.604.71.Search in Google Scholar
72. Ismadji, S.; Soetaredjo, F. E.; Ayucitra, A. Modification of Clay Minerals for Adsorption Purpose. In Clay Materials for Environmental Remediation; SpringerBriefs in Molecular Science; Springer International Publishing: Cham, 2015; pp 39–56.10.1007/978-3-319-16712-1_3Search in Google Scholar
73. Sandy; Maramis, V.; Kurniawan, A.; Ayucitra, A.; Sunarso, J.; Ismadji, S. Removal of Copper Ions from Aqueous Solution by Adsorption Using LABORATORIES-Modified Bentonite (Organo-Bentonite). Front. Chem. Sci. Eng. 2012, 6 (1), 58–66. https://doi.org/10.1007/s11705-011-1160-6.Search in Google Scholar
74. Nathaniel, E.; Kurniawan, A.; Soeteredjo, F. E.; Ismadji, S. Organo-Bentonite for the Adsorption of Pb(II) from Aqueous Solution: Temperature Dependent Parameters of Several Adsorption Equations. Desalin. Water Treat. 2011, 36 (1–3), 280–288. https://doi.org/10.5004/dwt.2011.2572.Search in Google Scholar
75. Anggraini, M.; Kurniawan, A.; Ong, L. K.; Martin, M. A.; Liu, J.-C.; Soetaredjo, F. E.; Indraswati, N.; Ismadji, S. Antibiotic Detoxification from Synthetic and Real Effluents Using a Novel MTAB Surfactant-Montmorillonite (Organoclay) Sorbent. RSC Adv. 2014, 4 (31), 16298–16311. https://doi.org/10.1039/C4RA00328D.Search in Google Scholar
76. Singla, P.; Mehta, R.; Upadhyay, S. N. Clay Modification by the Use of Organic Cations. Green Sustain. Chem. 2012, 02 (01), 21–25. https://doi.org/10.4236/gsc.2012.21004.Search in Google Scholar
77. He, H.; Ma, Y.; Zhu, J.; Yuan, P.; Qing, Y. Organoclays Prepared from Montmorillonites with Different Cation Exchange Capacity and Surfactant Configuration. Appl. Clay Sci. 2010, 48 (1–2), 67–72. https://doi.org/10.1016/j.clay.2009.11.024.Search in Google Scholar
78. Kan, T.; Jiang, X.; Zhou, L.; Yang, M.; Duan, M.; Liu, P.; Jiang, X. Removal of Methyl Orange from Aqueous Solutions Using a Bentonite Modified with a New Gemini Surfactant. Appl. Clay Sci. 2011, 54 (2), 184–187. https://doi.org/10.1016/j.clay.2011.07.009.Search in Google Scholar
79. Zhu, J.; Wang, T.; Zhu, R.; Ge, F.; Wei, J.; Yuan, P.; He, H. Novel Polymer/Surfactant Modified Montmorillonite Hybrids and the Implications for the Treatment of Hydrophobic Organic Compounds in Wastewaters. Appl. Clay Sci. 2011, 51 (3), 317–322. https://doi.org/10.1016/j.clay.2010.12.016.Search in Google Scholar
80. Rathnayake, S. I.; Xi, Y.; Frost, R. L.; Ayoko, G. A. Environmental Applications of Inorganic–Organic Clays for Recalcitrant Organic Pollutants Removal: Bisphenol A. J. Colloid Interface Sci. 2016, 470, 183–195. https://doi.org/10.1016/j.jcis.2016.02.034.Search in Google Scholar PubMed
81. Phuekphong, A. F.; Imwiset, K. J.; Ogawa, M. Organically Modified Bentonite as an Efficient and Reusable Adsorbent for Triclosan Removal from Water. Langmuir 2020, 36 (31), 9025–9034. https://doi.org/10.1021/acs.langmuir.0c00407.Search in Google Scholar PubMed
82. Phuekphong, A.; Imwiset, K.; Ogawa, M. Adsorption of Triclosan onto Organically Modified-Magadiite and Bentonite. J. Inorg. Organomet. Polym. 2021, 31 (5), 1902–1911. https://doi.org/10.1007/s10904-021-01919-0.Search in Google Scholar
83. Suwandi, A. C.; Indraswati, N.; Ismadji, S. Adsorption of N-Methylated Diaminotriphenilmethane Dye (Malachite Green) on Natural Rarasaponin Modified Kaolin. Desalin. Water Treat. 2012, 41 (1–3), 342–355. https://doi.org/10.1080/19443994.2012.664738.Search in Google Scholar
84. Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination. J. Am. Chem. Soc. 2013, 135 (47), 17853–17861. https://doi.org/10.1021/ja408121p.Search in Google Scholar PubMed
85. Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8 (9), 1696. https://doi.org/10.3390/app8091696.Search in Google Scholar
86. Cao, F.; Bai, P.; Li, H.; Ma, Y.; Deng, X.; Zhao, C. Preparation of Polyethersulfone–Organophilic Montmorillonite Hybrid Particles for the Removal of Bisphenol A. J. Hazard. Mater. 2009, 162 (2–3), 791–798. https://doi.org/10.1016/j.jhazmat.2008.05.102.Search in Google Scholar PubMed
87. Eğri, Ö.; Salimi, K.; Eğri, S.; Pişkin, E.; Rzayev, Z. M. O. Fabrication and Characterization of Novel Starch-Grafted Poly L -Lactic Acid/Montmorillonite Organoclay Nanocomposites. Carbohydr. Polym. 2016, 137, 111–118. https://doi.org/10.1016/j.carbpol.2015.10.043.Search in Google Scholar PubMed
88. Su, L.; Zeng, X.; He, H.; Tao, Q.; Komarneni, S. Preparation of Functionalized Kaolinite/Epoxy Resin Nanocomposites with Enhanced Thermal Properties. Appl. Clay Sci. 2017, 148, 103–108. https://doi.org/10.1016/j.clay.2017.08.017.Search in Google Scholar
89. Cherifi, Z.; Boukoussa, B.; Zaoui, A.; Belbachir, M.; Meghabar, R. Structural, Morphological and Thermal Properties of Nanocomposites Poly(GMA)/Clay Prepared by Ultrasound and In-Situ Polymerization. Ultrason. Sonochem. 2018, 48, 188–198. https://doi.org/10.1016/j.ultsonch.2018.05.027.Search in Google Scholar PubMed
90. Asensio, M.; Herrero, M.; Núñez, K.; Gallego, R.; Merino, J. C.; Pastor, J. M. In Situ Polymerization of Isotactic Polypropylene Sepiolite Nanocomposites and its Copolymers by Metallocene Catalysis. Eur. Polym. J. 2018, 100, 278–289. https://doi.org/10.1016/j.eurpolymj.2018.01.034.Search in Google Scholar
91. Ortiz-Martínez, K.; Reddy, P.; Cabrera-Lafaurie, W. A.; Román, F. R.; Hernández-Maldonado, A. J. Single and Multi-Component Adsorptive Removal of Bisphenol A and 2,4-Dichlorophenol from Aqueous Solutions with Transition Metal Modified Inorganic–Organic Pillared Clay Composites: Effect of pH and Presence of Humic Acid. J. Hazard. Mater. 2016, 312, 262–271. https://doi.org/10.1016/j.jhazmat.2016.03.073.Search in Google Scholar PubMed
92. Bai, Y.; Hong, J. Preparation of a Novel Millet Straw Biochar-Bentonite Composite and its Adsorption Property of Hg2+ in Aqueous Solution. Materials 2021, 14 (5), 1117. https://doi.org/10.3390/ma14051117.Search in Google Scholar PubMed PubMed Central
93. Liu, C.; Wu, P.; Zhu, Y.; Tran, L. Simultaneous Adsorption of Cd2+ and BPA on Amphoteric Surfactant Activated Montmorillonite. Chemosphere 2016, 144, 1026–1032. https://doi.org/10.1016/j.chemosphere.2015.09.063.Search in Google Scholar PubMed
94. Jović-Jovičić, N.; Mojović, M.; Stanković, D.; Nedić-Vasiljević, B.; Milutinović-Nikolić, A.; Banković, P.; Mojović, Z. Characterization and Electrochemical Properties of Organomodified and Corresponding Derived Carbonized Clay. Electrochim. Acta 2019, 296, 387–396. https://doi.org/10.1016/j.electacta.2018.11.031.Search in Google Scholar
95. Seddighi, H.; Khodadadi Darban, A.; Khanchi, A.; Fasihi, J.; Koleini, J. L. D. H. Mg/Al:2)@montmorillonite Nanocomposite as a Novel Anion-Exchanger to Adsorb Uranyl Ion from Carbonate-Containing Solutions. J. Radioanal. Nucl. Chem. 2017, 314 (1), 415–427. https://doi.org/10.1007/s10967-017-5387-7.Search in Google Scholar
96. Chen, R. S.; Ahmad, S.; Gan, S. Characterization of Recycled Thermoplastics-Based Nanocomposites: Polymer-Clay Compatibility, Blending Procedure, Processing Condition, and Clay Content Effects. Compos., Part B 2017, 131, 91–99. https://doi.org/10.1016/j.compositesb.2017.07.057.Search in Google Scholar
97. Akl, M. Synthesis and Characterization of Polymer Supported Organoclay Nanoparticles. Egypt. J. Chem. 2021, 64 (5), 2315–2324. https://doi.org/10.21608/ejchem.2021.57889.3244.Search in Google Scholar
98. Imwiset, K. J.; Hayakawa, T.; Fukushima, Y.; Yamada, T.; Ogawa, M. Novel Flexible Supramolecular Assembly of Dioleyldimethylammonium Ion in a Two-Dimensional Nanospace Studied by Neutron Scattering. Langmuir 2019, 35 (43), 13977–13982. https://doi.org/10.1021/acs.langmuir.9b02504.Search in Google Scholar PubMed
99. Raji, M.; Mekhzoum, M. E. M.; Rodrigue, D.; Qaiss, A. E. K.; Bouhfid, R. Effect of Silane Functionalization on Properties of Polypropylene/Clay Nanocomposites. Compos., Part B 2018, 146, 106–115. https://doi.org/10.1016/j.compositesb.2018.04.013.Search in Google Scholar
100. Wan, D.; Chen, Y.; Shi, Y.; Liu, Y.; Xiao, S. Effective Adsorption of Bisphenol A from Aqueous Solution over a Novel Mesoporous Carbonized Material Based on Spent Bleaching Earth. Environ. Sci. Pollut. Res. 2021, 28 (29), 40035–40048. https://doi.org/10.1007/s11356-021-13596-0.Search in Google Scholar PubMed
101. Zheng, S.; Sun, Z.; Park, Y.; Ayoko, G. A.; Frost, R. L. Removal of Bisphenol A from Wastewater by Ca-Montmorillonite Modified with Selected Surfactants. Chem. Eng. J. 2013, 234, 416–422. https://doi.org/10.1016/j.cej.2013.08.115.Search in Google Scholar
102. Liu, C.; Wu, P.; Tran, L.; Zhu, N.; Dang, Z. Organo-Montmorillonites for Efficient and Rapid Water Remediation: Sequential and Simultaneous Adsorption of Lead and Bisphenol A. Environ. Chem. 2018, 15 (5), 286. https://doi.org/10.1071/EN18057.Search in Google Scholar
103. Liao, Z.; Dai, S.; Long, S.; Yu, Y.; Ali, J.; Wang, H.; Chen, Z.; Chen, Z. Pd Based In Situ AOPs with Heterogeneous Catalyst of FeMgAl Layered Double Hydrotalcite for the Degradation of Bisphenol A and Landfill Leachate through Multiple Pathways. Environ. Sci. Pollut. Res. 2018, 25 (35), 35623–35636. https://doi.org/10.1007/s11356-018-3454-4.Search in Google Scholar PubMed
104. Li, Y.; Jin, F.; Wang, C.; Chen, Y.; Wang, Q.; Zhang, W.; Wang, D. Modification of Bentonite with Cationic Surfactant for the Enhanced Retention of Bisphenol A from Landfill Leachate. Environ. Sci. Pollut. Res. 2015, 22 (11), 8618–8628. https://doi.org/10.1007/s11356-014-4068-0.Search in Google Scholar PubMed
105. Garikoé, I.; Sorgho, B.; Yaméogo, A.; Guel, B.; Andala, D. Removal of Bisphenol A by Adsorption on Organically Modified Clays from Burkina Faso. Biorem. J. 2021, 25 (1), 22–47. https://doi.org/10.1080/10889868.2020.1842321.Search in Google Scholar
106. Tiwari, D.; Lee, S. M.; Thanhmingliana, T. Hybrid Materials in the Decontamination of Bisphenol A from Aqueous Solutions. RSC Adv. 2014, 10, 1039. C4RA06793B https://doi.org/10.1039/C4RA06793B.Search in Google Scholar
107. Wang, Z.-M.; Ooga, H.; Hirotsu, T.; Wang, W.-L.; Wu, Q. Y.; Hu, H.-Y. Matrix-Enhanced Adsorption Removal of Trace BPA by Controlling the Interlayer Hydrophobic Environment of Montmorillonite. Appl. Clay Sci. 2015, 104, 81–87. https://doi.org/10.1016/j.clay.2014.11.011.Search in Google Scholar
108. Sasai, R.; Watanabe, R.; Yamada, T. Preparation and Characterization of Titania- and Organo-Pillared Clay Hybrid Photocatalysts Capable of Oxidizing Aqueous Bisphenol A under Visible Light. Appl. Clay Sci. 2014, 93–94, 72–77. https://doi.org/10.1016/j.clay.2014.02.023.Search in Google Scholar
109. Liu, S.; Wu, P.; Chen, M.; Yu, L.; Kang, C.; Zhu, N.; Dang, Z. Amphoteric Modified Vermiculites as Adsorbents for Enhancing Removal of Organic Pollutants: Bisphenol A and Tetrabromobisphenol A. Environ. Pollut. 2017, 228, 277–286. https://doi.org/10.1016/j.envpol.2017.03.082.Search in Google Scholar PubMed
110. Zhao, Z.; Fu, D.; Zhang, B. Novel Molecularly Imprinted Polymer Prepared by Palygorskite as Support for Selective Adsorption of Bisphenol A in Aqueous Solution. Desalin. Water Treat. 2016, 57 (27), 12433–12442. https://doi.org/10.1080/19443994.2015.1052989.Search in Google Scholar
111. Wang, L.-C.; Ni, X.; Cao, Y.-H.; Cao, G. Adsorption Behavior of Bisphenol A on CTAB-Modified Graphite. Appl. Surf. Sci. 2018, 428, 165–170. https://doi.org/10.1016/j.apsusc.2017.07.093.Search in Google Scholar
112. Salehinia, S.; Ghoreishi, S. M.; Maya, F.; Cerdà, V. Hydrophobic Magnetic Montmorillonite Composite Material for the Efficient Adsorption and Microextraction of Bisphenol A from Water Samples. J. Environ. Chem. Eng. 2016, 4 (4), 4062–4071. https://doi.org/10.1016/j.jece.2016.08.007.Search in Google Scholar
113. Yang, Q.; Gao, M.; Luo, Z.; Yang, S. Enhanced Removal of Bisphenol A from Aqueous Solution by Organo-Montmorillonites Modified with Novel Gemini Pyridinium Surfactants Containing Long Alkyl Chain. Chem. Eng. J. 2016, 285, 27–38. https://doi.org/10.1016/j.cej.2015.09.114.Search in Google Scholar
114. Shabtai, I. A.; Mishael, Y. G. Polycyclodextrin–Clay Composites: Regenerable Dual-Site Sorbents for Bisphenol A Removal from Treated Wastewater. ACS Appl. Mater. Interfaces 2018, 10 (32), 27088–27097. https://doi.org/10.1021/acsami.8b09715.Search in Google Scholar PubMed
115. Drozd, D.; Szczubiałka, K.; Skiba, M.; Kepczynski, M.; Nowakowska, M. Porphyrin–Nanoclay Photosensitizers for Visible Light Induced Oxidation of Phenol in Aqueous Media. J. Phys. Chem. C 2014, 118 (17), 9196–9202. https://doi.org/10.1021/jp500024h.Search in Google Scholar
116. Liu, Y.; Wu, F.; Deng, N. Effect of Organic Carboxylic Acids on Bisphenol A Photocatalytic Degradation by Montmorillonite Minerals. J. Southeast Univ. (Nat. Sci. Ed.) 2009, 39 (S2), 283–287.Search in Google Scholar
117. Xiong, Z.; Xu, Y.; Zhu, L.; Zhao, J. Photosensitized Oxidation of Substituted Phenols on Aluminum Phthalocyanine-Intercalated Organoclay. Environ. Sci. Technol. 2005, 39 (2), 651–657. https://doi.org/10.1021/es0487630.Search in Google Scholar PubMed
118. Ezzatahmadi, N.; Ayoko, G. A.; Millar, G. J.; Speight, R.; Yan, C.; Li, J.; Li, S.; Zhu, J.; Xi, Y. Clay-supported Nanoscale Zero-Valent Iron Composite Materials for the Remediation of Contaminated Aqueous Solutions: A Review. Chem. Eng. J. 2017, 312, 336–350. https://doi.org/10.1016/j.cej.2016.11.154.Search in Google Scholar
119. Sasai, R.; Sugiyama, D.; Takahashi, S.; Tong, Z.; Shichi, T.; Itoh, H.; Takagi, K. The Removal and Photodecomposition of N-Nonylphenol Using Hydrophobic Clay Incorporated with Copper-Phthalocyanine in Aqueous Media. J. Photochem. Photobiol., A 2003, 155 (1–3), 223–229. https://doi.org/10.1016/S1010-6030(02)00372-6.Search in Google Scholar
120. Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive Nanoarchitectures Based on Clays Incorporating TiO 2 and ZnO Nanoparticles. Beilstein J. Nanotechnol. 2019, 10, 1140–1156. https://doi.org/10.3762/bjnano.10.114.Search in Google Scholar PubMed PubMed Central
121. Dong, X.; Ren, B.; Sun, Z.; Li, C.; Zhang, X.; Kong, M.; Zheng, S.; Dionysiou, D. D. Monodispersed CuFe2O4 Nanoparticles Anchored on Natural Kaolinite as Highly Efficient Peroxymonosulfate Catalyst for Bisphenol A Degradation. Appl. Catal., B 2019, 253, 206–217. https://doi.org/10.1016/j.apcatb.2019.04.052.Search in Google Scholar
122. Xi, Y.; Sun, Z.; Hreid, T.; Ayoko, G. A.; Frost, R. L. Bisphenol A Degradation Enhanced by Air Bubbles via Advanced Oxidation Using In Situ Generated Ferrous Ions from Nano Zero-Valent Iron/Palygorskite Composite Materials. Chem. Eng. J. 2014, 247, 66–74. https://doi.org/10.1016/j.cej.2014.02.077.Search in Google Scholar
123. Kundu, S.; Korin Manor, N.; Radian, A. Iron–Montmorillonite–Cyclodextrin Composites as Recyclable Sorbent Catalysts for the Adsorption and Surface Oxidation of Organic Pollutants. ACS Appl. Mater. Interfaces 2020, 12 (47), 52873–52887. https://doi.org/10.1021/acsami.0c17510.Search in Google Scholar PubMed
124. Ooka, C.; Yoshida, H.; Horio, M.; Suzuki, K.; Hattori, T. Adsorptive and Photocatalytic Performance of TiO2 Pillared Montmorillonite in Degradation of Endocrine Disruptors Having Different Hydrophobicity. Appl. Catal., B 2003, 41 (3), 313–321. https://doi.org/10.1016/S0926-3373(02)00169-8.Search in Google Scholar
125. Boussouf, I.; Medjram, M. S.; Ferroudj, N.; Abramson, S. Unexpected Activity of Magnetically Separable Fenton Catalyst in Clay Slurries. Environ. Technol. 2021, 42 (1), 43–57. https://doi.org/10.1080/09593330.2019.1620865.Search in Google Scholar PubMed
126. Middea, A.; Spinelli, L. S.; Souza Jr, F. G.; Neumann, R.; Fernandes, T. L. A. P.; Gomes, O. D. F. M. Preparation and Characterization of an Organo-Palygorskite-Fe3O4 Nanomaterial for Removal of Anionic Dyes from Wastewater. Appl. Clay Sci. 2017, 139, 45–53. https://doi.org/10.1016/j.clay.2017.01.017.Search in Google Scholar
127. Wang, J.; Zhang, M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. Int. J. Environ. Res. Public Health 2020, 17 (3), 1075. https://doi.org/10.3390/ijerph17031075.Search in Google Scholar PubMed PubMed Central
128. Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Johir, Md. A. H.; Sun, L.; Asadullah, M.; Belhaj, D. Sorption of Hydrophobic Organic Contaminants on Functionalized Biochar: Protagonist Role of π-π Electron-Donor-Acceptor Interactions and Hydrogen Bonds. J. Hazard. Mater. 2018, 360, 270–278. https://doi.org/10.1016/j.jhazmat.2018.08.005.Search in Google Scholar PubMed
129. Wang, J.; Gao, M.; Shen, T.; Yu, M.; Xiang, Y.; Liu, J. Insights into the Efficient Adsorption of Rhodamine B on Tunable Organo-Vermiculites. J. Hazard. Mater. 2019, 366, 501–511. https://doi.org/10.1016/j.jhazmat.2018.12.031.Search in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents
- Original Papers
- Unlocking treasure from fish bones: bioinspired hydroxyapatite synthesis from Catla catla fish for sustainable waste-to-wealth
- Green synthesized ZnO NPs from bamboo stem: optical, structural, morphological, and chemical studies
- Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic
- A novel Al-based self-lubricating hybrid composite composed of 2D-WS2, SiC, and Al2O3 for tribological applications
- Metallurgical and mechanical characterization of nitrided low-alloy steels
- Short Communication
- One-step spark plasma sintering infiltration of B4C/Al functionally graded materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents
- Original Papers
- Unlocking treasure from fish bones: bioinspired hydroxyapatite synthesis from Catla catla fish for sustainable waste-to-wealth
- Green synthesized ZnO NPs from bamboo stem: optical, structural, morphological, and chemical studies
- Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic
- A novel Al-based self-lubricating hybrid composite composed of 2D-WS2, SiC, and Al2O3 for tribological applications
- Metallurgical and mechanical characterization of nitrided low-alloy steels
- Short Communication
- One-step spark plasma sintering infiltration of B4C/Al functionally graded materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde