Home Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic
Article
Licensed
Unlicensed Requires Authentication

Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic

  • Parbati Naik and Sunanda Kumari Patri EMAIL logo
Published/Copyright: February 25, 2025
Become an author with De Gruyter Brill

Abstract

The solid-state reaction method was used to prepare the lead-free Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic. The X-ray diffraction pattern of the prepared ceramic confirmed the formation of tetragonal crystal structure with P4mm space group. The field emission scanning electron microscopy analysis reveals densely packed grains of different shape and sizes. The average grain size was calculated to be 16.22 µm. Complex impedance spectroscopy was used to analyze the electrical response of the ceramic. The Nyquist plot shows the influence of both grain and grain boundary effects on the electrical properties of the material. The impedance analysis confirmed the non-Debye type of relaxation mechanism and negative temperature coefficient of resistance behaviour of the compound. The frequency dependent ac conductivity was found to obey Jonscher’s power law.


Corresponding author: Sunanda Kumari Patri, Department of Physics, Veer Surendra Sai University of Technology, Burla, Sambalpur-768018, Odisha, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Pandit, P.; Satapathy, S.; Gupta, P. K. Phys. B 2011, 406, 2669–2677. https://doi.org/10.1016/j.physb.2011.03.081.Search in Google Scholar

2. Cheng, Z. X.; Li, A. H.; Wang, X. L.; Dou, S. X.; Ozawa, K.; Kimura, H.; Zhang, S. J.; Shrout, T. R. J. Appl. Phys. 2008, 103, 07E507. https://doi.org/10.1063/1.2839325.Search in Google Scholar

3. Kumar, M. M.; Srinivas, A.; Suryanarayana, S. V. J. Appl. Phys. 2000, 87, 855–862. https://doi.org/10.1063/1.371953.Search in Google Scholar

4. Pandit, P.; Satapathy, S.; Gupta, P. K.; Sathe, V. G. J. Appl. Phys. 2009, 106, 114105. https://doi.org/10.1063/1.3264836.Search in Google Scholar

5. Sosnowska, I.; Loewenhaupt, M.; David, W. I. F.; Ibberson, R. M. Phys. B 1992, 180–181, 117–118. https://doi.org/10.1016/0921-4526(92)90678-L.Search in Google Scholar

6. Thansanga, L.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Mater. Chem. Phys. 2021, 263, 124359. https://doi.org/10.1016/j.matchemphys.2021.124359.Search in Google Scholar

7. Purohit, V.; Choudhary, R. N. P. J. Mol. Struct. 2021, 1225, 129133. https://doi.org/10.1016/j.molstruc.2020.129133.Search in Google Scholar

8. Jian, Z.; Kumar, N. P.; Zhong, M.; Yemin, H.; Reddy, P. V. J. Magn. Magn. Mater. 2015, 386, 92–97. https://doi.org/10.1016/j.jmmm.2015.03.065.Search in Google Scholar

9. Bhadala, F.; Suthar, L.; Roy, M. Appl. Phys. A. 2021, 127, 320. https://doi.org/10.1007/s00339-021-04383-2.Search in Google Scholar

10. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 24020–24030. https://doi.org/10.1016/j.ceramint.2020.09.300.Search in Google Scholar

11. Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N. J. Electron. Mater. 2018, 47, 843–854. https://doi.org/10.1007/s11664-017-5848-3.Search in Google Scholar

12. Madolappa, S.; Anupama, A. V.; Jaschin, P. W.; Varma, K. B. R.; Sahoo, B. Bull. Mater. Sci. 2016, 39, 593–601. https://doi.org/10.1007/s12034-016-1176-0.Search in Google Scholar

13. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 4217–4225. https://doi.org/10.1016/j.ceramint.2020.09.300.Search in Google Scholar

14. Dash, S.; Choudhary, R. N. P. J. Electron. Mater. 2016, 45, 4129–4137. https://doi.org/10.1007/s11664-016-4651-x.Search in Google Scholar

15. Chen, C. C.; Liu, Z. X.; Wang, G.; Yan, Y. L. Bull. Mater. Sci. 2014, 37, 1725–1729. https://doi.org/10.1007/s12034-014-0719-5.Search in Google Scholar

16. Wang, T.; Xu, T.; Gao, S.; Song, S. H. Ceram. Int. 2017, 43, 4489–4495. https://doi.org/10.1016/j.ceramint.2016.12.100.Search in Google Scholar

17. Wang, T.; Song, S. H.; Ma, Q.; Tan, M. L.; Chen, J. J. J. Alloys Compd. 2019, 795, 60–68. https://doi.org/10.1016/j.jallcom.2019.04.327.Search in Google Scholar

18. Palkar, V. R.; Kundaliya, D. C.; Malik, S. K. J. Appl. Phys. 2003, 93, 4337–4339. https://doi.org/10.1063/1.1558992.Search in Google Scholar

19. Divya Lakshmi, S.; Shameem Banu, I. B. J. Sol-Gel Sci. Technol. 2019, 89, 713–721. https://doi.org/10.1007/s10971-018-4901-x.Search in Google Scholar

20. Divya Lakshmi, S.; Shameem Banu, I. B.; Rajesh, R.; Mamat, M. H.; Vijayaraghavan, G. V. J. Supercond. Nov. Magn. 2023, 36, 1693–1701. https://doi.org/10.1007/s10948-023-06609-1.Search in Google Scholar

21. Verma, V. J. Alloys Compd. 2015, 641, 205–209. https://doi.org/10.1016/j.jallcom.2015.03.260.Search in Google Scholar

22. Vashisth, B. K.; Bangruw, J. S.; Beniwa, A.; Gairol, S. P.; Kumar, A.; Singh, N.; Verma, V. J. Alloys Compd. 2017, 698, 699–705. https://doi.org/10.1016/j.jallcom.2016.12.278.Search in Google Scholar

23. Sharma, P.; Verma, V. J. Magn. Magn. Mater. 2015, 374, 18–21. https://doi.org/10.1016/j.jmmm.2014.08.002.Search in Google Scholar

24. Chauhan, S.; Kumar, M.; Yousuf, A.; Rathi, P.; Sahni, M.; Singh, S. Mater. Chem. Phys. 2021, 263, 124402. https://doi.org/10.1016/j.matchemphys.2021.124402.Search in Google Scholar

25. Tian, Y.; Xue, F.; Fu, Q.; Zhou, L.; Wang, C.; Gou, H.; Zhang, M. Ceram. Int. 2018, 44, 4287–429. https://doi.org/10.1016/j.ceramint.2017.12.013.Search in Google Scholar

26. Radojkovic, A.; Golic, D. L.; Cirkovic, J.; Stanojevic, Z. M.; Pajic, D.; Toric, F.; Dapcevic, A.; Vulic, P.; Brankovic, Z.; Brankovic, G. Ceram. Int. 2018, 44, 16739–16744. https://doi.org/10.1016/j.ceramint.2018.06.103.Search in Google Scholar

27. Wu, M. S.; Huang, Z. B.; Han, C. X.; Yuann, S. L.; Lu, C. L.; Xi, S. C. Solid State Commun. 2012, 152, 2142–2146. https://doi.org/10.1016/j.ssc.2012.09.005.Search in Google Scholar

28. Yu, B.; Li, M.; Liu, J.; Guo, D.; Pei, L.; Zhao, X. J. Phys. D: Appl. Phys. 2008, 41, 065003. https://doi.org/10.1088/0022-3727/41/6/065003.Search in Google Scholar

29. Jun, Y. K.; Moon, W. T.; Chang, C. M.; Kim, H. S.; Ryu, H. S.; Kim, J. W.; Kim, K. H.; Hong, S. H. Solid State Commun. 2005, 135, 133–137. https://doi.org/10.1016/j.ssc.2005.03.038.Search in Google Scholar

30. Chen, Z.; Mao, S.; Ma, L.; Luo, G.; Feng, Q.; Cen, Z.; Toyohisa, F.; Peng, X.; Liu, L.; Zhou, H.; Hu, C.; Luo, N. J. Materiomics. 2022, 8, 753–762. https://doi.org/10.1016/j.jmat.2022.03.004.Search in Google Scholar

31. Jiang, J.; Meng, X.; Li, L.; Zhang, J.; Guo, S.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S. T. Chem. Eng. J. 2021, 422, 130130. https://doi.org/10.1016/j.cej.2021.130130.Search in Google Scholar

32. Reznitchenko, L. A.; Turik, A. V.; Kuznetsova, E. M.; Sakhnenko, V. P. J. Phys.: Condens. Matter 2001, 13, 3875–3881. https://doi.org/10.1088/0953-8984/13/17/308.Search in Google Scholar

33. Qi, H.; Zuo, R.; Xie, A.; Fu, J.; Zhang, D. J. Eur. Ceram. Soc. 2019, 39, 3703–3709. https://doi.org/10.1016/j.jeurceramsoc.2019.05.043.Search in Google Scholar

34. Raevski, I. P.; Prosandeev, S. A. J. Phys. Chem. Solids 2002, 63, 1939–1950. https://doi.org/10.1016/S0022-3697(02)00181-6.Search in Google Scholar

35. Ahlawat, A.; Sathe, V. G.; Reddy, V. R.; Gupta, A. J. Magn. Magn. Mater. 2011, 323, 2049–2054. https://doi.org/10.1016/j.jmmm.2011.03.017.Search in Google Scholar

36. Lim, K. P.; Ng, S. W.; Lau, L. N.; Kechik, M. M. A.; Chen, S. K.; Halim, S. A. Appl. Phys. A 2019, 125, 745. https://doi.org/10.1007/s00339-019-3046-2.Search in Google Scholar

37. Brinkman, K.; Iijima, T.; Nishida, K.; Katoda, T.; Funakubo, H. Ferroelectr 2007, 357, 35–40. https://doi.org/10.1080/00150190701527597.Search in Google Scholar

38. Makhdoom, A. R.; Akhtar, M. J.; Rafiq, M. A.; Hassan, M. M. Ceram. Int. 2012, 38, 3829–3834. https://doi.org/10.1016/j.ceramint.2012.01.032.Search in Google Scholar

39. Pandit, P.; Satapathy, S.; Gupta, P. K. Phys. B 2011, 406, 2669–2677. https://doi.org/10.1016/j.physb.2011.03.081.Search in Google Scholar

40. Samantray, N. P.; Arya, B. B.; Choudhary, R. N. P. J. Electroceram. 2023, 50, 82–96. https://doi.org/10.1007/s10832-023-00307-z.Search in Google Scholar

41. Sharma, S.; Shamim, K.; Ranjan, A.; Rai, R.; Kumari, P.; Sinha, S. Ceram. Int. 2015, 41, 7713–7722. https://doi.org/10.1016/j.ceramint.2015.02.102.Search in Google Scholar

42. Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P.; Kumar, A. RSC Adv. 2018, 8, 36939–36950. https://doi.org/10.1039/C8RA02306A.Search in Google Scholar PubMed PubMed Central

43. Nair, S. G.; Satapathy, J.; Kumar, N. P. App. Phy. A 2020, 126, 836. https://doi.org/10.1007/s00339-020-04027-x.Search in Google Scholar

44. Kumari, B.; Mandal, P. R.; Nath, T. K. Adv. Mat. Lett. 2014, 5, 84–88. https://doi.org/10.5185/amlett.2013.fdm.36.Search in Google Scholar

45. Priyadharsini, P.; Pradeep, A.; Sathyamoorthy, B.; Chandrasekaran, G. J. Phys. Chem. Solids 2014, 75, 797. https://doi.org/10.1016/j.jpcs.2014.03.001.Search in Google Scholar

46. Deng, H.; Zhang, M.; Hu, Z.; Xie, Q.; Zhong, Q.; Wei, J.; Yan, H. J. Alloys Compd. 2014, 582, 273–276. https://doi.org/10.1016/j.jallcom.2013.07.187.Search in Google Scholar

47. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 4217–4225. https://doi.org/10.1016/j.ceramint.2020.09.300.Search in Google Scholar

48. Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Ceram. Int. 2019, 45, 822–831. https://doi.org/10.1016/j.ceramint.2018.09.249.Search in Google Scholar

49. Shamim, M. K.; Sharma, S.; Sinha, S.; Nasreen, E. J. Adv. Dielec. 2017, 7, 1750020. https://doi.org/10.1142/S2010135X17500205.Search in Google Scholar

50. Singh, S.; Kaur, A.; Kaur, P.; Singh, L. ACS Omega 2023, 8, 25623–25638. https://doi.org/10.1021/acsomega.3c04490.Search in Google Scholar PubMed PubMed Central

51. Sen, S.; Choudhary, R. N. P.; Tarafdar, A.; Pramanik, P. J. App. Phy. 2006, 99, 124114. https://doi.org/10.1063/1.2206850.Search in Google Scholar

52. Yahakou, E. H.; Bendahhou, A.; Chourti, K.; Chaou, F.; Jalafi, I.; Barkany, S. E.; Bahari, Z.; Salama, M. A. RSC Adv. 2022, 12, 33124. https://doi.org/10.1039/D2RA06758G.Search in Google Scholar

53. Singh, S.; Kaur, A.; Kaur, P.; Singh, L. J. Alloys Compd. 2023, 941, 169023. https://doi.org/10.1016/j.jallcom.2023.169023.Search in Google Scholar

54. Rani, R.; Sharma, S.; Rai, R.; Kholkin, A. L. J. Appl. Phys. 2011, 110, 104102. https://doi.org/10.1063/1.3660267.Search in Google Scholar

55. Sharma, D. K.; Kumar, R.; Rai, R.; Sharma, S.; Kholkin, A. L. J. Adv. Dielectr. 2012, 2, 1250002. https://doi.org/10.1142/S2010135X12500026.Search in Google Scholar

56. Rout, A.; Agrawal, S. Ceram. Int. 2021, 47, 7032–7044. https://doi.org/10.1016/j.ceramint.2020.11.053.Search in Google Scholar

57. Charguia, R.; Hcini, S.; Boudard, M.; Dhahri, A. J. Mater. Sci. Mater. Electron. 2019, 30, 2975–2984. https://doi.org/10.1007/s10854-018-00575-4.Search in Google Scholar

58. Manzoor, S.; Husain, S.; Somvanshi, A.; Fatema, M. J. Appl. Phys. 2020, 128, 064101. https://doi.org/10.1063/5.0013245.Search in Google Scholar

59. Gupta, P.; Mahapatra, P. K.; Choudhary, R. N. P.; Acharya, T. Phys. Lett. A 2020, 384, 126827. https://doi.org/10.1016/j.physleta.2020.126827.Search in Google Scholar

60. Pradhani, N.; Mahapatra, P. K.; Choudhary, R. N. P. J. Phys.: Mater. 2018, 1, 015007. https://doi.org/10.1088/2515-7639/aacff0.Search in Google Scholar

61. Das, R.; Choudhary, R. N. P. Solid State Sci. 2019, 87, 1–8. https://doi.org/10.1016/j.solidstatesciences.2018.10.020.Search in Google Scholar

62. Kumari, S.; Ortega, N.; Kumar, A.; Pavunny, S. P.; Hubbard, J. W.; Rinaldi, C.; Srinivasan, G.; Scott, J. F.; Katiyar, R. S. J. Appl. Phys. 2015, 117, 114102. https://doi.org/10.1063/1.4915110.Search in Google Scholar

63. Bendahhou, A.; Chourti, K.; Bouayadi, R. E.; Barkanya, S. E.; Salama, M. A. RSC Adv. 2020, 10, 28007–28018. https://doi.org/10.1039/D0RA05163B.Search in Google Scholar PubMed PubMed Central

64. Zhou, Y.; Huang, X.; Jiang, L.; Hou, Y.; Lin, H.; Cheng, Z.; Sun, D. J. Mater. Sci. Mater. Electron. 2022, 33, 25475–25487. https://doi.org/10.1007/s10854-022-09251-0.Search in Google Scholar

65. Dhahri, A.; Dhahri, E.; Hlil, E. K. RSC Adv. 2018, 8, 9103–9111. https://doi.org/10.1039/C8RA00037A.Search in Google Scholar PubMed PubMed Central

66. Rahal, A.; Borchani, S. M.; Guidara, K.; Megdiche, M. R. Soc. Open Sci. 2018, 5, 171472. https://doi.org/10.1098/rsos.171472.Search in Google Scholar PubMed PubMed Central

67. Jebli, M.; Rayssi, C.; Dhahri, J.; Henda, M. B.; Belmabrouk, H.; Bajahzar, A. RSC Adv. 2021, 11, 23664–23678. https://doi.org/10.1039/D1RA01763B.Search in Google Scholar

68. Gaabel, F.; Khlifi, M.; Hamdaoui, N.; Taibi, K.; Dhahri, J. J. Alloys Compd. 2020, 828, 154373. https://doi.org/10.1016/j.jallcom.2020.154373.Search in Google Scholar

Received: 2023-10-27
Accepted: 2024-10-07
Published Online: 2025-02-25
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0322/html
Scroll to top button