Abstract
The solid-state reaction method was used to prepare the lead-free Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic. The X-ray diffraction pattern of the prepared ceramic confirmed the formation of tetragonal crystal structure with P4mm space group. The field emission scanning electron microscopy analysis reveals densely packed grains of different shape and sizes. The average grain size was calculated to be 16.22 µm. Complex impedance spectroscopy was used to analyze the electrical response of the ceramic. The Nyquist plot shows the influence of both grain and grain boundary effects on the electrical properties of the material. The impedance analysis confirmed the non-Debye type of relaxation mechanism and negative temperature coefficient of resistance behaviour of the compound. The frequency dependent ac conductivity was found to obey Jonscher’s power law.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Pandit, P.; Satapathy, S.; Gupta, P. K. Phys. B 2011, 406, 2669–2677. https://doi.org/10.1016/j.physb.2011.03.081.Search in Google Scholar
2. Cheng, Z. X.; Li, A. H.; Wang, X. L.; Dou, S. X.; Ozawa, K.; Kimura, H.; Zhang, S. J.; Shrout, T. R. J. Appl. Phys. 2008, 103, 07E507. https://doi.org/10.1063/1.2839325.Search in Google Scholar
3. Kumar, M. M.; Srinivas, A.; Suryanarayana, S. V. J. Appl. Phys. 2000, 87, 855–862. https://doi.org/10.1063/1.371953.Search in Google Scholar
4. Pandit, P.; Satapathy, S.; Gupta, P. K.; Sathe, V. G. J. Appl. Phys. 2009, 106, 114105. https://doi.org/10.1063/1.3264836.Search in Google Scholar
5. Sosnowska, I.; Loewenhaupt, M.; David, W. I. F.; Ibberson, R. M. Phys. B 1992, 180–181, 117–118. https://doi.org/10.1016/0921-4526(92)90678-L.Search in Google Scholar
6. Thansanga, L.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Mater. Chem. Phys. 2021, 263, 124359. https://doi.org/10.1016/j.matchemphys.2021.124359.Search in Google Scholar
7. Purohit, V.; Choudhary, R. N. P. J. Mol. Struct. 2021, 1225, 129133. https://doi.org/10.1016/j.molstruc.2020.129133.Search in Google Scholar
8. Jian, Z.; Kumar, N. P.; Zhong, M.; Yemin, H.; Reddy, P. V. J. Magn. Magn. Mater. 2015, 386, 92–97. https://doi.org/10.1016/j.jmmm.2015.03.065.Search in Google Scholar
9. Bhadala, F.; Suthar, L.; Roy, M. Appl. Phys. A. 2021, 127, 320. https://doi.org/10.1007/s00339-021-04383-2.Search in Google Scholar
10. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 24020–24030. https://doi.org/10.1016/j.ceramint.2020.09.300.Search in Google Scholar
11. Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N. J. Electron. Mater. 2018, 47, 843–854. https://doi.org/10.1007/s11664-017-5848-3.Search in Google Scholar
12. Madolappa, S.; Anupama, A. V.; Jaschin, P. W.; Varma, K. B. R.; Sahoo, B. Bull. Mater. Sci. 2016, 39, 593–601. https://doi.org/10.1007/s12034-016-1176-0.Search in Google Scholar
13. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 4217–4225. https://doi.org/10.1016/j.ceramint.2020.09.300.Search in Google Scholar
14. Dash, S.; Choudhary, R. N. P. J. Electron. Mater. 2016, 45, 4129–4137. https://doi.org/10.1007/s11664-016-4651-x.Search in Google Scholar
15. Chen, C. C.; Liu, Z. X.; Wang, G.; Yan, Y. L. Bull. Mater. Sci. 2014, 37, 1725–1729. https://doi.org/10.1007/s12034-014-0719-5.Search in Google Scholar
16. Wang, T.; Xu, T.; Gao, S.; Song, S. H. Ceram. Int. 2017, 43, 4489–4495. https://doi.org/10.1016/j.ceramint.2016.12.100.Search in Google Scholar
17. Wang, T.; Song, S. H.; Ma, Q.; Tan, M. L.; Chen, J. J. J. Alloys Compd. 2019, 795, 60–68. https://doi.org/10.1016/j.jallcom.2019.04.327.Search in Google Scholar
18. Palkar, V. R.; Kundaliya, D. C.; Malik, S. K. J. Appl. Phys. 2003, 93, 4337–4339. https://doi.org/10.1063/1.1558992.Search in Google Scholar
19. Divya Lakshmi, S.; Shameem Banu, I. B. J. Sol-Gel Sci. Technol. 2019, 89, 713–721. https://doi.org/10.1007/s10971-018-4901-x.Search in Google Scholar
20. Divya Lakshmi, S.; Shameem Banu, I. B.; Rajesh, R.; Mamat, M. H.; Vijayaraghavan, G. V. J. Supercond. Nov. Magn. 2023, 36, 1693–1701. https://doi.org/10.1007/s10948-023-06609-1.Search in Google Scholar
21. Verma, V. J. Alloys Compd. 2015, 641, 205–209. https://doi.org/10.1016/j.jallcom.2015.03.260.Search in Google Scholar
22. Vashisth, B. K.; Bangruw, J. S.; Beniwa, A.; Gairol, S. P.; Kumar, A.; Singh, N.; Verma, V. J. Alloys Compd. 2017, 698, 699–705. https://doi.org/10.1016/j.jallcom.2016.12.278.Search in Google Scholar
23. Sharma, P.; Verma, V. J. Magn. Magn. Mater. 2015, 374, 18–21. https://doi.org/10.1016/j.jmmm.2014.08.002.Search in Google Scholar
24. Chauhan, S.; Kumar, M.; Yousuf, A.; Rathi, P.; Sahni, M.; Singh, S. Mater. Chem. Phys. 2021, 263, 124402. https://doi.org/10.1016/j.matchemphys.2021.124402.Search in Google Scholar
25. Tian, Y.; Xue, F.; Fu, Q.; Zhou, L.; Wang, C.; Gou, H.; Zhang, M. Ceram. Int. 2018, 44, 4287–429. https://doi.org/10.1016/j.ceramint.2017.12.013.Search in Google Scholar
26. Radojkovic, A.; Golic, D. L.; Cirkovic, J.; Stanojevic, Z. M.; Pajic, D.; Toric, F.; Dapcevic, A.; Vulic, P.; Brankovic, Z.; Brankovic, G. Ceram. Int. 2018, 44, 16739–16744. https://doi.org/10.1016/j.ceramint.2018.06.103.Search in Google Scholar
27. Wu, M. S.; Huang, Z. B.; Han, C. X.; Yuann, S. L.; Lu, C. L.; Xi, S. C. Solid State Commun. 2012, 152, 2142–2146. https://doi.org/10.1016/j.ssc.2012.09.005.Search in Google Scholar
28. Yu, B.; Li, M.; Liu, J.; Guo, D.; Pei, L.; Zhao, X. J. Phys. D: Appl. Phys. 2008, 41, 065003. https://doi.org/10.1088/0022-3727/41/6/065003.Search in Google Scholar
29. Jun, Y. K.; Moon, W. T.; Chang, C. M.; Kim, H. S.; Ryu, H. S.; Kim, J. W.; Kim, K. H.; Hong, S. H. Solid State Commun. 2005, 135, 133–137. https://doi.org/10.1016/j.ssc.2005.03.038.Search in Google Scholar
30. Chen, Z.; Mao, S.; Ma, L.; Luo, G.; Feng, Q.; Cen, Z.; Toyohisa, F.; Peng, X.; Liu, L.; Zhou, H.; Hu, C.; Luo, N. J. Materiomics. 2022, 8, 753–762. https://doi.org/10.1016/j.jmat.2022.03.004.Search in Google Scholar
31. Jiang, J.; Meng, X.; Li, L.; Zhang, J.; Guo, S.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S. T. Chem. Eng. J. 2021, 422, 130130. https://doi.org/10.1016/j.cej.2021.130130.Search in Google Scholar
32. Reznitchenko, L. A.; Turik, A. V.; Kuznetsova, E. M.; Sakhnenko, V. P. J. Phys.: Condens. Matter 2001, 13, 3875–3881. https://doi.org/10.1088/0953-8984/13/17/308.Search in Google Scholar
33. Qi, H.; Zuo, R.; Xie, A.; Fu, J.; Zhang, D. J. Eur. Ceram. Soc. 2019, 39, 3703–3709. https://doi.org/10.1016/j.jeurceramsoc.2019.05.043.Search in Google Scholar
34. Raevski, I. P.; Prosandeev, S. A. J. Phys. Chem. Solids 2002, 63, 1939–1950. https://doi.org/10.1016/S0022-3697(02)00181-6.Search in Google Scholar
35. Ahlawat, A.; Sathe, V. G.; Reddy, V. R.; Gupta, A. J. Magn. Magn. Mater. 2011, 323, 2049–2054. https://doi.org/10.1016/j.jmmm.2011.03.017.Search in Google Scholar
36. Lim, K. P.; Ng, S. W.; Lau, L. N.; Kechik, M. M. A.; Chen, S. K.; Halim, S. A. Appl. Phys. A 2019, 125, 745. https://doi.org/10.1007/s00339-019-3046-2.Search in Google Scholar
37. Brinkman, K.; Iijima, T.; Nishida, K.; Katoda, T.; Funakubo, H. Ferroelectr 2007, 357, 35–40. https://doi.org/10.1080/00150190701527597.Search in Google Scholar
38. Makhdoom, A. R.; Akhtar, M. J.; Rafiq, M. A.; Hassan, M. M. Ceram. Int. 2012, 38, 3829–3834. https://doi.org/10.1016/j.ceramint.2012.01.032.Search in Google Scholar
39. Pandit, P.; Satapathy, S.; Gupta, P. K. Phys. B 2011, 406, 2669–2677. https://doi.org/10.1016/j.physb.2011.03.081.Search in Google Scholar
40. Samantray, N. P.; Arya, B. B.; Choudhary, R. N. P. J. Electroceram. 2023, 50, 82–96. https://doi.org/10.1007/s10832-023-00307-z.Search in Google Scholar
41. Sharma, S.; Shamim, K.; Ranjan, A.; Rai, R.; Kumari, P.; Sinha, S. Ceram. Int. 2015, 41, 7713–7722. https://doi.org/10.1016/j.ceramint.2015.02.102.Search in Google Scholar
42. Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P.; Kumar, A. RSC Adv. 2018, 8, 36939–36950. https://doi.org/10.1039/C8RA02306A.Search in Google Scholar PubMed PubMed Central
43. Nair, S. G.; Satapathy, J.; Kumar, N. P. App. Phy. A 2020, 126, 836. https://doi.org/10.1007/s00339-020-04027-x.Search in Google Scholar
44. Kumari, B.; Mandal, P. R.; Nath, T. K. Adv. Mat. Lett. 2014, 5, 84–88. https://doi.org/10.5185/amlett.2013.fdm.36.Search in Google Scholar
45. Priyadharsini, P.; Pradeep, A.; Sathyamoorthy, B.; Chandrasekaran, G. J. Phys. Chem. Solids 2014, 75, 797. https://doi.org/10.1016/j.jpcs.2014.03.001.Search in Google Scholar
46. Deng, H.; Zhang, M.; Hu, Z.; Xie, Q.; Zhong, Q.; Wei, J.; Yan, H. J. Alloys Compd. 2014, 582, 273–276. https://doi.org/10.1016/j.jallcom.2013.07.187.Search in Google Scholar
47. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 4217–4225. https://doi.org/10.1016/j.ceramint.2020.09.300.Search in Google Scholar
48. Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Ceram. Int. 2019, 45, 822–831. https://doi.org/10.1016/j.ceramint.2018.09.249.Search in Google Scholar
49. Shamim, M. K.; Sharma, S.; Sinha, S.; Nasreen, E. J. Adv. Dielec. 2017, 7, 1750020. https://doi.org/10.1142/S2010135X17500205.Search in Google Scholar
50. Singh, S.; Kaur, A.; Kaur, P.; Singh, L. ACS Omega 2023, 8, 25623–25638. https://doi.org/10.1021/acsomega.3c04490.Search in Google Scholar PubMed PubMed Central
51. Sen, S.; Choudhary, R. N. P.; Tarafdar, A.; Pramanik, P. J. App. Phy. 2006, 99, 124114. https://doi.org/10.1063/1.2206850.Search in Google Scholar
52. Yahakou, E. H.; Bendahhou, A.; Chourti, K.; Chaou, F.; Jalafi, I.; Barkany, S. E.; Bahari, Z.; Salama, M. A. RSC Adv. 2022, 12, 33124. https://doi.org/10.1039/D2RA06758G.Search in Google Scholar
53. Singh, S.; Kaur, A.; Kaur, P.; Singh, L. J. Alloys Compd. 2023, 941, 169023. https://doi.org/10.1016/j.jallcom.2023.169023.Search in Google Scholar
54. Rani, R.; Sharma, S.; Rai, R.; Kholkin, A. L. J. Appl. Phys. 2011, 110, 104102. https://doi.org/10.1063/1.3660267.Search in Google Scholar
55. Sharma, D. K.; Kumar, R.; Rai, R.; Sharma, S.; Kholkin, A. L. J. Adv. Dielectr. 2012, 2, 1250002. https://doi.org/10.1142/S2010135X12500026.Search in Google Scholar
56. Rout, A.; Agrawal, S. Ceram. Int. 2021, 47, 7032–7044. https://doi.org/10.1016/j.ceramint.2020.11.053.Search in Google Scholar
57. Charguia, R.; Hcini, S.; Boudard, M.; Dhahri, A. J. Mater. Sci. Mater. Electron. 2019, 30, 2975–2984. https://doi.org/10.1007/s10854-018-00575-4.Search in Google Scholar
58. Manzoor, S.; Husain, S.; Somvanshi, A.; Fatema, M. J. Appl. Phys. 2020, 128, 064101. https://doi.org/10.1063/5.0013245.Search in Google Scholar
59. Gupta, P.; Mahapatra, P. K.; Choudhary, R. N. P.; Acharya, T. Phys. Lett. A 2020, 384, 126827. https://doi.org/10.1016/j.physleta.2020.126827.Search in Google Scholar
60. Pradhani, N.; Mahapatra, P. K.; Choudhary, R. N. P. J. Phys.: Mater. 2018, 1, 015007. https://doi.org/10.1088/2515-7639/aacff0.Search in Google Scholar
61. Das, R.; Choudhary, R. N. P. Solid State Sci. 2019, 87, 1–8. https://doi.org/10.1016/j.solidstatesciences.2018.10.020.Search in Google Scholar
62. Kumari, S.; Ortega, N.; Kumar, A.; Pavunny, S. P.; Hubbard, J. W.; Rinaldi, C.; Srinivasan, G.; Scott, J. F.; Katiyar, R. S. J. Appl. Phys. 2015, 117, 114102. https://doi.org/10.1063/1.4915110.Search in Google Scholar
63. Bendahhou, A.; Chourti, K.; Bouayadi, R. E.; Barkanya, S. E.; Salama, M. A. RSC Adv. 2020, 10, 28007–28018. https://doi.org/10.1039/D0RA05163B.Search in Google Scholar PubMed PubMed Central
64. Zhou, Y.; Huang, X.; Jiang, L.; Hou, Y.; Lin, H.; Cheng, Z.; Sun, D. J. Mater. Sci. Mater. Electron. 2022, 33, 25475–25487. https://doi.org/10.1007/s10854-022-09251-0.Search in Google Scholar
65. Dhahri, A.; Dhahri, E.; Hlil, E. K. RSC Adv. 2018, 8, 9103–9111. https://doi.org/10.1039/C8RA00037A.Search in Google Scholar PubMed PubMed Central
66. Rahal, A.; Borchani, S. M.; Guidara, K.; Megdiche, M. R. Soc. Open Sci. 2018, 5, 171472. https://doi.org/10.1098/rsos.171472.Search in Google Scholar PubMed PubMed Central
67. Jebli, M.; Rayssi, C.; Dhahri, J.; Henda, M. B.; Belmabrouk, H.; Bajahzar, A. RSC Adv. 2021, 11, 23664–23678. https://doi.org/10.1039/D1RA01763B.Search in Google Scholar
68. Gaabel, F.; Khlifi, M.; Hamdaoui, N.; Taibi, K.; Dhahri, J. J. Alloys Compd. 2020, 828, 154373. https://doi.org/10.1016/j.jallcom.2020.154373.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents
- Original Papers
- Unlocking treasure from fish bones: bioinspired hydroxyapatite synthesis from Catla catla fish for sustainable waste-to-wealth
- Green synthesized ZnO NPs from bamboo stem: optical, structural, morphological, and chemical studies
- Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic
- A novel Al-based self-lubricating hybrid composite composed of 2D-WS2, SiC, and Al2O3 for tribological applications
- Metallurgical and mechanical characterization of nitrided low-alloy steels
- Short Communication
- One-step spark plasma sintering infiltration of B4C/Al functionally graded materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Review of functionalised clay materials for removal of bisphenol A from industrial and wastewater effluents
- Original Papers
- Unlocking treasure from fish bones: bioinspired hydroxyapatite synthesis from Catla catla fish for sustainable waste-to-wealth
- Green synthesized ZnO NPs from bamboo stem: optical, structural, morphological, and chemical studies
- Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic
- A novel Al-based self-lubricating hybrid composite composed of 2D-WS2, SiC, and Al2O3 for tribological applications
- Metallurgical and mechanical characterization of nitrided low-alloy steels
- Short Communication
- One-step spark plasma sintering infiltration of B4C/Al functionally graded materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde