Home Green synthesized ZnO NPs from bamboo stem: optical, structural, morphological, and chemical studies
Article
Licensed
Unlicensed Requires Authentication

Green synthesized ZnO NPs from bamboo stem: optical, structural, morphological, and chemical studies

  • Sanjeev Kimothi , Priyanka Thakur , Madan Lal ORCID logo EMAIL logo and Naveen Chandra Joshi
Published/Copyright: March 7, 2025
Become an author with De Gruyter Brill

Abstract

Bamboo is rich in nutrients, bioactive compounds, and antioxidants. Phenols, flavonoids, and vitamins C and E are the primary antioxidants present. In this report, pristine ZnO NPs were prepared by a green co-precipitation route using a bamboo stem extract. The Rietveld refined X-ray diffraction pattern confirmed pure phase formation of ZnO NPs and having a wurtzite hexagonal structure with space group = P63mc. The William˗Hall method was used to calculate the crystallite size which was found to be 35.38 nm with a compressive strain of −1.43 × 10−3. Scanning electron microscopy confirmed the mushroom-like surface morphology. Fourier transform infrared spectroscopy study, antisymmetric stretching confirms Zn–O bonding. A strong absorption peak around 380 nm was observed in ultra-violet spectra and a broad emission band at ∼389.5 nm (3.18 eV) was confirmed by photo-luminescence spectroscopy.


Corresponding author: Madan Lal, Department of Physics, Graphic Era (Deemed to be University), Clement Town, Dehradun, UK 248002, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: SK: Conceptualization, data curation, Methodology, Writing original, PT: Software, Visualization, ML: Writing-original, Writing-review & editing, Software, Visualization, NCJ: Writing-review & editing, Resources.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that they have no competing interests.

  6. Research funding: None declared.

  7. Data availability: Data will be made available on reasonable request.

References

1. Zhang, D.; Ma, X.-l.; Gu, Y.; Huang, H.; Zhang, G.-w. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front. Chem. 2020, 8; https://doi.org/10.3389/fchem.2020.00799.Search in Google Scholar PubMed PubMed Central

2. Shafiq, T.; Uzair, M.; Iqbal, M. J.; Zafar, M.; Hussain, S. J.; Shah, S. A. A. Green Synthesis of Metallic Nano-Particles and Their Potential in Bio-Medical Applications. Nano Biomed. Eng. 2021, 13 (2), 191–206; https://doi.org/10.5101/nbe.v13i2.p191-206.Search in Google Scholar

3. Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green Synthesis of Nanoparticles Using Plant Extracts: A Review. Environ. Chem. Lett. 2021, 19, 355–374. https://doi.org/10.1007/s10311-020-01074-x.Search in Google Scholar

4. Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R. K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. Materials 2018, 11 (6), 940. https://doi.org/10.3390/ma11060940.Search in Google Scholar PubMed PubMed Central

5. Cuong, H. N.; Pansambal, S.; Ghotekar, S.; Oza, R.; Hai, N. T. T.; Viet, N. M.; Nguyen, V.-H. New Frontiers in the Plant Extract Mediated Biosynthesis of Copper Oxide (CuO) Nanoparticles and Their Potential Applications: A Review. Environ. Res. 2022, 203, 111858. https://doi.org/10.1016/j.envres.2021.111858.Search in Google Scholar PubMed

6. Gottimukkala, K.; Harika, R.; Zamare, D. Green Synthesis of Iron Nanoparticles Using Green Tea Leaves Extract. J. Nanomed. Biother. Discov. 2017, 7 (1); https://doi.org/10.4172/2155-983X.1000151.Search in Google Scholar

7. Chauhan, A.; Verma, R.; Kumari, S.; Sharma, A.; Shandilya, P.; Li, X.; Batoo, K. M.; Imran, A.; Kulshrestha, S.; Kumar, R. Photocatalytic Dye Degradation and Antimicrobial Activities of Pure and Ag-Doped ZnO Using Cannabis Sativa Leaf Extract. Sci. rep. 2020, 10 (1), 7881. https://doi.org/10.1038/s41598-020-64419-0.Search in Google Scholar PubMed PubMed Central

8. Al-darwesh, M. Y.; Ibrahim, S. S.; Mohammed, M. A. A Review on Plant Extract Mediated Green Synthesis of Zinc Oxide Nanoparticles and Their Biomedical Applications. Res. Chem. 2024, 101368. https://doi.org/10.1016/j.rechem.2024.101368.Search in Google Scholar

9. Rani, N.; Singh, P.; Kumar, S.; Kumar, P.; Bhankar, V.; Kumar, K. Plant-mediated Synthesis of Nanoparticles and Their Applications: A Review. Mater. Res. Bull. 2023, 163, 112233. https://doi.org/10.1016/j.materresbull.2023.112233.Search in Google Scholar

10. Nasrollahzadeh, M.; Sajadi, S. M.; Maham, M. Green Synthesis of Palladium Nanoparticles Using Hippophae Rhamnoides Linn Leaf Extract and Their Catalytic Activity for the Suzuki–Miyaura Coupling in Water. J. Mol. Catal. A: Chem. 2015, 396, 297–303. https://doi.org/10.1016/j.molcata.2014.10.019.Search in Google Scholar

11. Siddiqui, M. H.; Al-Whaibi, M. H.; Firoz, M.; Al-Khaishany, M. Y. Role of Nanoparticles in Plants. Nanotechnol. plant Sci.: Nanopart. Their Imp. Plants 2015, 19–35. https://doi.org/10.1007/978-3-319-14502-0_2.Search in Google Scholar

12. Maheshwaran, G.; Bharathi, A. N.; Selvi, M. M.; Kumar, M. K.; Kumar, R. M.; Sudhahar, S. Green Synthesis of Silver Oxide Nanoparticles Using Zephyranthes Rosea Flower Extract and Evaluation of Biological Activities. J. Environ. Chem. Eng. 2020, 8 (5), 104137. https://doi.org/10.1016/j.jece.2020.104137.Search in Google Scholar

13. Kabra, A.; Martins, N.; Sharma, R.; Kabra, R.; Baghel, U. S. Myrica Esculenta Buch.-Ham. Ex D. Don: A Natural Source for Health Promotion and Disease Prevention. Plants 2019, 8 (6), 149. https://doi.org/10.3390/plants8060149.Search in Google Scholar PubMed PubMed Central

14. Kichu, M.; Malewska, T.; Akter, K.; Imchen, I.; Harrington, D.; Kohen, J.; Vemulpad, S. R.; Jamie, J. F. An Ethnobotanical Study of Medicinal Plants of Chungtia Village, Nagaland, India. J. Ethnopharmacol. 2015, 166, 5–17. https://doi.org/10.1016/j.jep.2015.02.053.Search in Google Scholar PubMed

15. Sood, P.; Shri, R. A Review on Ethnomedicinal, Phytochemical and Pharmacological Aspects of Myrica Esculenta. Indian J. Pharm. Sci. 2018, 80 (1); https://doi.org/10.4172/pharmaceutical-sciences.1000325.Search in Google Scholar

16. Ruti, I.; Kumar, S. Bamboo Shoot Extract as a Novel and Efficient Reducing Agent for Graphene Oxide and its Supercapacitor Application. J. Mater. Sci.: Mater. Electron. 2023, 34 (1), 11. https://doi.org/10.1007/s10854-022-09419-8.Search in Google Scholar

17. Mili, M.; Hashmi, S.; Tilwari, A.; Rathore, S.; Naik, A.; Srivastava, A.; Verma, S. Preparation of Nanolignin Rich Fraction from Bamboo Stem via Green Technology: Assessment of its Antioxidant, Antibacterial and UV Blocking Properties. Environ. Technol. 2023, 44 (3), 416–430. https://doi.org/10.1080/09593330.2021.1973574.Search in Google Scholar PubMed

18. Chen, X.; Zhang, J.; Zhang, B.; Dong, S.; Guo, X.; Mu, X.; Fei, B. A Novel Hierarchical Porous Nitrogen-Doped Carbon Derived from Bamboo Shoot for High Performance Supercapacitor. Sci. Rep. 2017, 7 (1), 7362. https://doi.org/10.1038/s41598-017-06730-x.Search in Google Scholar PubMed PubMed Central

19. Gagliano, J.; Anselmo-Moreira, F.; Sala-Carvalho, W. R.; Furlan, C. M. What Is Known about the Medicinal Potential of Bamboo? Adv. Trad. Med. 2022, 22 (3), 467–495. https://doi.org/10.1007/s13596-020-00536-5.Search in Google Scholar

20. Shukla, R.; Sumit, G.; Sajal, S.; Dwivedi, P.; Mishra, A. Medicinal Importance of Bamboo. Int. J. Biopharm. Phytochem. Res. 2012, 1 (1), 9–15.Search in Google Scholar

21. Cheng, Y.; Wan, S.; Yao, L.; Lin, D.; Wu, T.; Chen, Y.; Zhang, A.; Lu, C. Bamboo Leaf: A Review of Traditional Medicinal Property, Phytochemistry, Pharmacology, and Purification Technology. J. Ethnopharm. 2023, 116166. https://doi.org/10.1016/j.jep.2023.116166.Search in Google Scholar PubMed

22. Ghafari, E.; Feng, Y.; Liu, Y.; Ferguson, I.; Lu, N. Investigating Process-Structure Relations of ZnO Nanofiber via Electrospinning Method. Compos., Part B 2017, 116, 40–45. https://doi.org/10.1016/j.compositesb.2017.02.026.Search in Google Scholar

23. Korber, N.; Fleischmann, A. Synthesis and Crystal Structure of [Li (NH 3) 4] 4 [Sn 9]·NH 3 and [Li (NH 3) 4] 4 [Pb 9] NH 3. J. Chem. Soc., Dalton Trans. 2001 (4), 383–385. https://doi.org/10.1039/B008123J.Search in Google Scholar

24. Prabhavathi, S. P.; Punitha, J.; Rajam, P. S.; Ranjith, R.; Suresh, G.; Mala, N.; Maruthamuthu, D. Simple Methods of Synthesis of Copper Oxide, Zinc Oxide, Lead Oxide and Barium Oxide Nanoparticles. J. Chem. Pharm. Res. 2014, 6, 1472–1478.Search in Google Scholar

25. Thakur, P.; Sharma, V.; Sharma, R.; Wollschläger, J.; Ruwisch, K.; Dahshan, A.; Thakur, S.; Sharma, P. Transformation in the Structural and Optical Properties with the Phase Change from Hematite (Fe2O3) to Pure Spinel Structure in Mn-Zn Nanoferrites. Phys. B 2020, 584, 412107. https://doi.org/10.1016/j.physb.2020.412107.Search in Google Scholar

26. Thakur, P.; Sharma, R.; Sharma, V.; Sharma, P. Structural and Optical Properties of Mn0. 5Zn0. 5Fe2O4 Nano Ferrites: Effect of Sintering Temperature. Mater. Chem. Phys. 2017, 193, 285–289. https://doi.org/10.1016/j.matchemphys.2017.02.043.Search in Google Scholar

27. Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A. K. Antimicrobial Activity of Metal and Metal‐oxide Based Nanoparticles. Adv. Ther. 2018, 1 (3), 1700033. https://doi.org/10.1002/adtp.201700033.Search in Google Scholar

28. Kanwal, S.; Tahir Khan, M.; Tirth, V.; Algahtani, A.; Al-Mughanam, T.; Zaman, A. Room-Temperature Ferromagnetism in Mn-Doped ZnO Nanoparticles Synthesized by the Sol–Gel Method. ACS Omega 2023, 8 (31), 28749–28757. https://doi.org/10.1021/acsomega.3c03418.Search in Google Scholar PubMed PubMed Central

29. Sun, Y.; Ndifor-Angwafor, N. G.; Riley, D. J.; Ashfold, M. N. Synthesis and Photoluminescence of Ultra-thin ZnO Nanowire/nanotube Arrays Formed by Hydrothermal Growth. Chem. Phys. Lett. 2006, 431 (4-6), 352–357. https://doi.org/10.1016/j.cplett.2006.09.100.Search in Google Scholar

30. Sahoo, B.; Panda, P.; Ramakrishna, S. Electrospinning of Functional Ceramic Nanofibers. Open Ceramics 2022, 100291. https://doi.org/10.1016/j.oceram.2022.100291.Search in Google Scholar

31. Xiang, B.; Wang, P.; Zhang, X.; Dayeh, S. A.; Aplin, D. P.; Soci, C.; Yu, D.; Wang, D. Rational Synthesis of P-type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition. Nano lett. 2007, 7 (2), 323–328. https://doi.org/10.1021/nl062410c.Search in Google Scholar PubMed

32. Suresh, D.; Nethravathi, P.; Rajanaika, H.; Nagabhushana, H.; Sharma, S. Green Synthesis of Multifunctional Zinc Oxide (ZnO) Nanoparticles Using Cassia Fistula Plant Extract and Their Photodegradative, Antioxidant and Antibacterial Activities. Mater. Sci. Semicond. Process. 2015, 31, 446–454. https://doi.org/10.1016/j.mssp.2014.12.023.Search in Google Scholar

33. Nethravathi, P.; Kumar, M. P.; Suresh, D.; Lingaraju, K.; Rajanaika, H.; Nagabhushana, H.; Sharma, S. Tinospora Cordifolia Mediated Facile Green Synthesis of Cupric Oxide Nanoparticles and Their Photocatalytic, Antioxidant and Antibacterial Properties. Mater. Sci. Semicond. Process. 2015, 33, 81–88. https://doi.org/10.1016/j.mssp.2015.01.034.Search in Google Scholar

34. Naseer, M.; Aslam, U.; Khalid, B.; Chen, B. Green Route to Synthesize Zinc Oxide Nanoparticles Using Leaf Extracts of Cassia Fistula and Melia Azadarach and Their Antibacterial Potential. Sci. Rep. 2020, 10 (1), 9055. https://doi.org/10.1038/s41598-020-65949-3.Search in Google Scholar PubMed PubMed Central

35. Thakur, S.; Kaur, M.; Lim, W. F.; Lal, M. Fabrication and Characterization of Electrospun ZnO Nanofibers; Antimicrobial Assessment. Mater. Lett. 2020, 264, 127279. https://doi.org/10.1016/j.matlet.2019.127279.Search in Google Scholar

36. Nirmala, C.; Bisht, M. S.; Bajwa, H. K.; Santosh, O. Bamboo: A Rich Source of Natural Antioxidants and its Applications in the Food and Pharmaceutical Industry. Trends Food Sci. Technol. 2018, 77, 91–99. https://doi.org/10.1016/j.tifs.2018.05.003.Search in Google Scholar

37. Zhang, Y.; Wu, L.; Li, Y.; Yang, J.; Yang, H.; Zhao, Y.; Chen, G. Bamboo Shoot and its Food Applications in Last Decade: An Undervalued Edible Resource from Forest to Feed Future People. Trends Food Sci. Technol. 2024, 104399. https://doi.org/10.1016/j.tifs.2024.104399.Search in Google Scholar

38. Bajwa, H. K.; Santosh, O.; Chongtham, N. Bioactive Compounds in Bamboo Shoot. In. Bioactive Compounds in underutilized vegetables and legumes, Reference series in phytochemistry (Springer): Cham, 2020, pp. 1–22.10.1007/978-3-030-44578-2_24-1Search in Google Scholar

39. Gebresellasie, K.; Shirokoff, J.; Lewis, J. Effect of X-Ray Line Spectra Profile Fitting with Pearson VII, Pseudo-voigt and Generalized Fermi Functions on Asphalt Binder Aromaticity and Crystallite Parameters. J. Phys.: Conf. Ser. Vol. 397; IOP Publishing: Bristol, UK, 2012; p. 012069.10.1088/1742-6596/397/1/012069Search in Google Scholar

40. Beyer, J.; Roth, N.; Brummerstedt Iversen, B. Effects of Voigt Diffraction Peak Profiles on the Pair Distribution Function. Acta Crystallographica Section A: Found. Adv. 2022, 78 (1), 10–20. https://doi.org/10.1107/S2053273321011840.Search in Google Scholar PubMed

41. Sarmast, A.; Schubnell, J.; Preußner, J.; Hinterstein, M.; Carl, E. Residual Stress Analysis in Industrial Parts: A Comprehensive Comparison of XRD Methods. J. Mater. Sci. 2023, 1–25. https://doi.org/10.1007/s10853-023-09069-z.Search in Google Scholar

42. Joshi, N. C.; Rawat, B.; Kumar, P.; Kumar, N.; Upadhyay, S.; Chetana, S.; Gururani, P.; Kimothi, S. Sustainable Synthetic Approach and Applications of ZnO/r-GO in the Adsorption of Toxic Pb2+ and Cr6+ Ions. Inorg. Chem. Commun. 2022, 145, 110040. https://doi.org/10.1016/j.inoche.2022.110040.Search in Google Scholar

43. Faniyi, I.; Fasakin, O.; Olofinjana, B.; Adekunle, A.; Oluwasusi, T.; Eleruja, M.; Ajayi, E. The Comparative Analyses of Reduced Graphene Oxide (RGO) Prepared via Green, Mild and Chemical Approaches. SN Appl. Sci. 2019, 1, 1–7. https://doi.org/10.1007/s42452-019-1188-7.Search in Google Scholar

44. Andrijanto, E.; Shoelarta, S.; Subiyanto, G.; Rifki, S. Facile Synthesis of Graphene from Graphite Using Ascorbic Acid as Reducing Agent. In AIP Conference Proceedings, Vol. 1725; AIP Publishing: Long Island, NY, 2016.10.1063/1.4945457Search in Google Scholar

45. Vigneshwaran, N.; Kumar, S.; Kathe, A.; Varadarajan, P.; Prasad, V. Functional Finishing of Cotton Fabrics Using Zinc Oxide–Soluble Starch Nanocomposites. Nanotechnology 2006, 17 (20), 5087; https://doi.org/10.1088/0957-4484/17/20/008.Search in Google Scholar

46. Usha, R.; Ananthaselvi, P.; Venil, C.; Palaniswamy, M. Antimicrobial and Antiangiogenesis Activity of Streptomyces Parvulus KUAP106 from Mangrove Soil. Eur. J. Biol. Sci. 2010, 2 (4), 77–83.Search in Google Scholar

Received: 2024-06-27
Accepted: 2024-11-08
Published Online: 2025-03-07
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0200/html
Scroll to top button