Startseite Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impedance and modulus spectroscopy of Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic

  • Parbati Naik und Sunanda Kumari Patri EMAIL logo
Veröffentlicht/Copyright: 25. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The solid-state reaction method was used to prepare the lead-free Bi0·5Na0·5Nb0·5Fe0·5O3 ceramic. The X-ray diffraction pattern of the prepared ceramic confirmed the formation of tetragonal crystal structure with P4mm space group. The field emission scanning electron microscopy analysis reveals densely packed grains of different shape and sizes. The average grain size was calculated to be 16.22 µm. Complex impedance spectroscopy was used to analyze the electrical response of the ceramic. The Nyquist plot shows the influence of both grain and grain boundary effects on the electrical properties of the material. The impedance analysis confirmed the non-Debye type of relaxation mechanism and negative temperature coefficient of resistance behaviour of the compound. The frequency dependent ac conductivity was found to obey Jonscher’s power law.


Corresponding author: Sunanda Kumari Patri, Department of Physics, Veer Surendra Sai University of Technology, Burla, Sambalpur-768018, Odisha, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Pandit, P.; Satapathy, S.; Gupta, P. K. Phys. B 2011, 406, 2669–2677. https://doi.org/10.1016/j.physb.2011.03.081.Suche in Google Scholar

2. Cheng, Z. X.; Li, A. H.; Wang, X. L.; Dou, S. X.; Ozawa, K.; Kimura, H.; Zhang, S. J.; Shrout, T. R. J. Appl. Phys. 2008, 103, 07E507. https://doi.org/10.1063/1.2839325.Suche in Google Scholar

3. Kumar, M. M.; Srinivas, A.; Suryanarayana, S. V. J. Appl. Phys. 2000, 87, 855–862. https://doi.org/10.1063/1.371953.Suche in Google Scholar

4. Pandit, P.; Satapathy, S.; Gupta, P. K.; Sathe, V. G. J. Appl. Phys. 2009, 106, 114105. https://doi.org/10.1063/1.3264836.Suche in Google Scholar

5. Sosnowska, I.; Loewenhaupt, M.; David, W. I. F.; Ibberson, R. M. Phys. B 1992, 180–181, 117–118. https://doi.org/10.1016/0921-4526(92)90678-L.Suche in Google Scholar

6. Thansanga, L.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Mater. Chem. Phys. 2021, 263, 124359. https://doi.org/10.1016/j.matchemphys.2021.124359.Suche in Google Scholar

7. Purohit, V.; Choudhary, R. N. P. J. Mol. Struct. 2021, 1225, 129133. https://doi.org/10.1016/j.molstruc.2020.129133.Suche in Google Scholar

8. Jian, Z.; Kumar, N. P.; Zhong, M.; Yemin, H.; Reddy, P. V. J. Magn. Magn. Mater. 2015, 386, 92–97. https://doi.org/10.1016/j.jmmm.2015.03.065.Suche in Google Scholar

9. Bhadala, F.; Suthar, L.; Roy, M. Appl. Phys. A. 2021, 127, 320. https://doi.org/10.1007/s00339-021-04383-2.Suche in Google Scholar

10. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 24020–24030. https://doi.org/10.1016/j.ceramint.2020.09.300.Suche in Google Scholar

11. Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N. J. Electron. Mater. 2018, 47, 843–854. https://doi.org/10.1007/s11664-017-5848-3.Suche in Google Scholar

12. Madolappa, S.; Anupama, A. V.; Jaschin, P. W.; Varma, K. B. R.; Sahoo, B. Bull. Mater. Sci. 2016, 39, 593–601. https://doi.org/10.1007/s12034-016-1176-0.Suche in Google Scholar

13. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 4217–4225. https://doi.org/10.1016/j.ceramint.2020.09.300.Suche in Google Scholar

14. Dash, S.; Choudhary, R. N. P. J. Electron. Mater. 2016, 45, 4129–4137. https://doi.org/10.1007/s11664-016-4651-x.Suche in Google Scholar

15. Chen, C. C.; Liu, Z. X.; Wang, G.; Yan, Y. L. Bull. Mater. Sci. 2014, 37, 1725–1729. https://doi.org/10.1007/s12034-014-0719-5.Suche in Google Scholar

16. Wang, T.; Xu, T.; Gao, S.; Song, S. H. Ceram. Int. 2017, 43, 4489–4495. https://doi.org/10.1016/j.ceramint.2016.12.100.Suche in Google Scholar

17. Wang, T.; Song, S. H.; Ma, Q.; Tan, M. L.; Chen, J. J. J. Alloys Compd. 2019, 795, 60–68. https://doi.org/10.1016/j.jallcom.2019.04.327.Suche in Google Scholar

18. Palkar, V. R.; Kundaliya, D. C.; Malik, S. K. J. Appl. Phys. 2003, 93, 4337–4339. https://doi.org/10.1063/1.1558992.Suche in Google Scholar

19. Divya Lakshmi, S.; Shameem Banu, I. B. J. Sol-Gel Sci. Technol. 2019, 89, 713–721. https://doi.org/10.1007/s10971-018-4901-x.Suche in Google Scholar

20. Divya Lakshmi, S.; Shameem Banu, I. B.; Rajesh, R.; Mamat, M. H.; Vijayaraghavan, G. V. J. Supercond. Nov. Magn. 2023, 36, 1693–1701. https://doi.org/10.1007/s10948-023-06609-1.Suche in Google Scholar

21. Verma, V. J. Alloys Compd. 2015, 641, 205–209. https://doi.org/10.1016/j.jallcom.2015.03.260.Suche in Google Scholar

22. Vashisth, B. K.; Bangruw, J. S.; Beniwa, A.; Gairol, S. P.; Kumar, A.; Singh, N.; Verma, V. J. Alloys Compd. 2017, 698, 699–705. https://doi.org/10.1016/j.jallcom.2016.12.278.Suche in Google Scholar

23. Sharma, P.; Verma, V. J. Magn. Magn. Mater. 2015, 374, 18–21. https://doi.org/10.1016/j.jmmm.2014.08.002.Suche in Google Scholar

24. Chauhan, S.; Kumar, M.; Yousuf, A.; Rathi, P.; Sahni, M.; Singh, S. Mater. Chem. Phys. 2021, 263, 124402. https://doi.org/10.1016/j.matchemphys.2021.124402.Suche in Google Scholar

25. Tian, Y.; Xue, F.; Fu, Q.; Zhou, L.; Wang, C.; Gou, H.; Zhang, M. Ceram. Int. 2018, 44, 4287–429. https://doi.org/10.1016/j.ceramint.2017.12.013.Suche in Google Scholar

26. Radojkovic, A.; Golic, D. L.; Cirkovic, J.; Stanojevic, Z. M.; Pajic, D.; Toric, F.; Dapcevic, A.; Vulic, P.; Brankovic, Z.; Brankovic, G. Ceram. Int. 2018, 44, 16739–16744. https://doi.org/10.1016/j.ceramint.2018.06.103.Suche in Google Scholar

27. Wu, M. S.; Huang, Z. B.; Han, C. X.; Yuann, S. L.; Lu, C. L.; Xi, S. C. Solid State Commun. 2012, 152, 2142–2146. https://doi.org/10.1016/j.ssc.2012.09.005.Suche in Google Scholar

28. Yu, B.; Li, M.; Liu, J.; Guo, D.; Pei, L.; Zhao, X. J. Phys. D: Appl. Phys. 2008, 41, 065003. https://doi.org/10.1088/0022-3727/41/6/065003.Suche in Google Scholar

29. Jun, Y. K.; Moon, W. T.; Chang, C. M.; Kim, H. S.; Ryu, H. S.; Kim, J. W.; Kim, K. H.; Hong, S. H. Solid State Commun. 2005, 135, 133–137. https://doi.org/10.1016/j.ssc.2005.03.038.Suche in Google Scholar

30. Chen, Z.; Mao, S.; Ma, L.; Luo, G.; Feng, Q.; Cen, Z.; Toyohisa, F.; Peng, X.; Liu, L.; Zhou, H.; Hu, C.; Luo, N. J. Materiomics. 2022, 8, 753–762. https://doi.org/10.1016/j.jmat.2022.03.004.Suche in Google Scholar

31. Jiang, J.; Meng, X.; Li, L.; Zhang, J.; Guo, S.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S. T. Chem. Eng. J. 2021, 422, 130130. https://doi.org/10.1016/j.cej.2021.130130.Suche in Google Scholar

32. Reznitchenko, L. A.; Turik, A. V.; Kuznetsova, E. M.; Sakhnenko, V. P. J. Phys.: Condens. Matter 2001, 13, 3875–3881. https://doi.org/10.1088/0953-8984/13/17/308.Suche in Google Scholar

33. Qi, H.; Zuo, R.; Xie, A.; Fu, J.; Zhang, D. J. Eur. Ceram. Soc. 2019, 39, 3703–3709. https://doi.org/10.1016/j.jeurceramsoc.2019.05.043.Suche in Google Scholar

34. Raevski, I. P.; Prosandeev, S. A. J. Phys. Chem. Solids 2002, 63, 1939–1950. https://doi.org/10.1016/S0022-3697(02)00181-6.Suche in Google Scholar

35. Ahlawat, A.; Sathe, V. G.; Reddy, V. R.; Gupta, A. J. Magn. Magn. Mater. 2011, 323, 2049–2054. https://doi.org/10.1016/j.jmmm.2011.03.017.Suche in Google Scholar

36. Lim, K. P.; Ng, S. W.; Lau, L. N.; Kechik, M. M. A.; Chen, S. K.; Halim, S. A. Appl. Phys. A 2019, 125, 745. https://doi.org/10.1007/s00339-019-3046-2.Suche in Google Scholar

37. Brinkman, K.; Iijima, T.; Nishida, K.; Katoda, T.; Funakubo, H. Ferroelectr 2007, 357, 35–40. https://doi.org/10.1080/00150190701527597.Suche in Google Scholar

38. Makhdoom, A. R.; Akhtar, M. J.; Rafiq, M. A.; Hassan, M. M. Ceram. Int. 2012, 38, 3829–3834. https://doi.org/10.1016/j.ceramint.2012.01.032.Suche in Google Scholar

39. Pandit, P.; Satapathy, S.; Gupta, P. K. Phys. B 2011, 406, 2669–2677. https://doi.org/10.1016/j.physb.2011.03.081.Suche in Google Scholar

40. Samantray, N. P.; Arya, B. B.; Choudhary, R. N. P. J. Electroceram. 2023, 50, 82–96. https://doi.org/10.1007/s10832-023-00307-z.Suche in Google Scholar

41. Sharma, S.; Shamim, K.; Ranjan, A.; Rai, R.; Kumari, P.; Sinha, S. Ceram. Int. 2015, 41, 7713–7722. https://doi.org/10.1016/j.ceramint.2015.02.102.Suche in Google Scholar

42. Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P.; Kumar, A. RSC Adv. 2018, 8, 36939–36950. https://doi.org/10.1039/C8RA02306A.Suche in Google Scholar PubMed PubMed Central

43. Nair, S. G.; Satapathy, J.; Kumar, N. P. App. Phy. A 2020, 126, 836. https://doi.org/10.1007/s00339-020-04027-x.Suche in Google Scholar

44. Kumari, B.; Mandal, P. R.; Nath, T. K. Adv. Mat. Lett. 2014, 5, 84–88. https://doi.org/10.5185/amlett.2013.fdm.36.Suche in Google Scholar

45. Priyadharsini, P.; Pradeep, A.; Sathyamoorthy, B.; Chandrasekaran, G. J. Phys. Chem. Solids 2014, 75, 797. https://doi.org/10.1016/j.jpcs.2014.03.001.Suche in Google Scholar

46. Deng, H.; Zhang, M.; Hu, Z.; Xie, Q.; Zhong, Q.; Wei, J.; Yan, H. J. Alloys Compd. 2014, 582, 273–276. https://doi.org/10.1016/j.jallcom.2013.07.187.Suche in Google Scholar

47. Xu, D.; Zhao, W.; Cao, W.; Li, W.; Fei, W. Ceram. Int. 2021, 47, 4217–4225. https://doi.org/10.1016/j.ceramint.2020.09.300.Suche in Google Scholar

48. Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R. N. P. Ceram. Int. 2019, 45, 822–831. https://doi.org/10.1016/j.ceramint.2018.09.249.Suche in Google Scholar

49. Shamim, M. K.; Sharma, S.; Sinha, S.; Nasreen, E. J. Adv. Dielec. 2017, 7, 1750020. https://doi.org/10.1142/S2010135X17500205.Suche in Google Scholar

50. Singh, S.; Kaur, A.; Kaur, P.; Singh, L. ACS Omega 2023, 8, 25623–25638. https://doi.org/10.1021/acsomega.3c04490.Suche in Google Scholar PubMed PubMed Central

51. Sen, S.; Choudhary, R. N. P.; Tarafdar, A.; Pramanik, P. J. App. Phy. 2006, 99, 124114. https://doi.org/10.1063/1.2206850.Suche in Google Scholar

52. Yahakou, E. H.; Bendahhou, A.; Chourti, K.; Chaou, F.; Jalafi, I.; Barkany, S. E.; Bahari, Z.; Salama, M. A. RSC Adv. 2022, 12, 33124. https://doi.org/10.1039/D2RA06758G.Suche in Google Scholar

53. Singh, S.; Kaur, A.; Kaur, P.; Singh, L. J. Alloys Compd. 2023, 941, 169023. https://doi.org/10.1016/j.jallcom.2023.169023.Suche in Google Scholar

54. Rani, R.; Sharma, S.; Rai, R.; Kholkin, A. L. J. Appl. Phys. 2011, 110, 104102. https://doi.org/10.1063/1.3660267.Suche in Google Scholar

55. Sharma, D. K.; Kumar, R.; Rai, R.; Sharma, S.; Kholkin, A. L. J. Adv. Dielectr. 2012, 2, 1250002. https://doi.org/10.1142/S2010135X12500026.Suche in Google Scholar

56. Rout, A.; Agrawal, S. Ceram. Int. 2021, 47, 7032–7044. https://doi.org/10.1016/j.ceramint.2020.11.053.Suche in Google Scholar

57. Charguia, R.; Hcini, S.; Boudard, M.; Dhahri, A. J. Mater. Sci. Mater. Electron. 2019, 30, 2975–2984. https://doi.org/10.1007/s10854-018-00575-4.Suche in Google Scholar

58. Manzoor, S.; Husain, S.; Somvanshi, A.; Fatema, M. J. Appl. Phys. 2020, 128, 064101. https://doi.org/10.1063/5.0013245.Suche in Google Scholar

59. Gupta, P.; Mahapatra, P. K.; Choudhary, R. N. P.; Acharya, T. Phys. Lett. A 2020, 384, 126827. https://doi.org/10.1016/j.physleta.2020.126827.Suche in Google Scholar

60. Pradhani, N.; Mahapatra, P. K.; Choudhary, R. N. P. J. Phys.: Mater. 2018, 1, 015007. https://doi.org/10.1088/2515-7639/aacff0.Suche in Google Scholar

61. Das, R.; Choudhary, R. N. P. Solid State Sci. 2019, 87, 1–8. https://doi.org/10.1016/j.solidstatesciences.2018.10.020.Suche in Google Scholar

62. Kumari, S.; Ortega, N.; Kumar, A.; Pavunny, S. P.; Hubbard, J. W.; Rinaldi, C.; Srinivasan, G.; Scott, J. F.; Katiyar, R. S. J. Appl. Phys. 2015, 117, 114102. https://doi.org/10.1063/1.4915110.Suche in Google Scholar

63. Bendahhou, A.; Chourti, K.; Bouayadi, R. E.; Barkanya, S. E.; Salama, M. A. RSC Adv. 2020, 10, 28007–28018. https://doi.org/10.1039/D0RA05163B.Suche in Google Scholar PubMed PubMed Central

64. Zhou, Y.; Huang, X.; Jiang, L.; Hou, Y.; Lin, H.; Cheng, Z.; Sun, D. J. Mater. Sci. Mater. Electron. 2022, 33, 25475–25487. https://doi.org/10.1007/s10854-022-09251-0.Suche in Google Scholar

65. Dhahri, A.; Dhahri, E.; Hlil, E. K. RSC Adv. 2018, 8, 9103–9111. https://doi.org/10.1039/C8RA00037A.Suche in Google Scholar PubMed PubMed Central

66. Rahal, A.; Borchani, S. M.; Guidara, K.; Megdiche, M. R. Soc. Open Sci. 2018, 5, 171472. https://doi.org/10.1098/rsos.171472.Suche in Google Scholar PubMed PubMed Central

67. Jebli, M.; Rayssi, C.; Dhahri, J.; Henda, M. B.; Belmabrouk, H.; Bajahzar, A. RSC Adv. 2021, 11, 23664–23678. https://doi.org/10.1039/D1RA01763B.Suche in Google Scholar

68. Gaabel, F.; Khlifi, M.; Hamdaoui, N.; Taibi, K.; Dhahri, J. J. Alloys Compd. 2020, 828, 154373. https://doi.org/10.1016/j.jallcom.2020.154373.Suche in Google Scholar

Received: 2023-10-27
Accepted: 2024-10-07
Published Online: 2025-02-25
Published in Print: 2025-03-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0322/html?lang=de
Button zum nach oben scrollen