Home Effect of different activating agents on carbon derived from Tinospora cordifolia for EDLC application
Article
Licensed
Unlicensed Requires Authentication

Effect of different activating agents on carbon derived from Tinospora cordifolia for EDLC application

  • Komal ORCID logo , Kuldeep Mishra , Yogesh Kumar and Vivek Kumar Shukla ORCID logo EMAIL logo
Published/Copyright: October 1, 2024
Become an author with De Gruyter Brill

Abstract

The effect of two activating agents namely phosphoric acid (H3PO4) and iron (III) chloride (FeCl3) is investigated, in activation of carbon obtained from Tinospora cordifolia. The structural and morphological properties of the synthesized activated carbons were investigated using X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and Brunauer–Emmett–Teller analysis. A notable yield of ∼60 % of the activated carbons was obtained using a simple and cost-effective approach of chemical activation followed by the thermal activation method. The electrochemical properties of the activated carbons were studied for electric double-layer capacitor application. The electrochemical impedance spectroscopy, galvanostatic charge–discharge and cyclic voltammetry studies revealed superior charge transfer properties of the carbon activated with H3PO4. The capacitor comprising carbon activated with H3PO4 electrodes shows higher specific capacity of 58 F g−1 at 1 A g−1 than that of carbon activated with FeCl3 (37.5 F g−1). The optimized capacitor delivers superior power density and energy density of 2 kW kg−1 and 28.33 W h kg−1, respectively.


Corresponding author: Vivek Kumar Shukla, Department of Applied Physics, Gautam Buddha University, Greater Noida, Gautam Budh Nagar, UP 201312, India, E-mail:

Acknowledgments

The authors gratefully thank the use of the experimental facilities at MNIT Jaipur’s Material Research Centre (MRC) and CRF IIT Delhi, India.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors Komal and Vivek Kumar Shukla conceptualized and developed the experiments. Komal, Yogesh Kumar, and Kuldeep Mishra carried out the experiments and data analysis. Komal and Vivek Kumar Shukla carried out discussions and prepared the manuscript. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  4. Conflict of interest: The authors claim that they have no known financial or personal conflicts of interest that might have impacted the findings of this study.

  5. Research funding: None declared.

  6. Data availability: The data collected to support the article’s findings are presented in the article.

References

1. Dubey, R.; Guruviah, V. Review of Carbon-Based Electrode Materials for Supercapacitor Energy Storage. Ionics 2019, 25 (4), 1419–1445. https://doi.org/10.1007/s11581-019-02874-0.Search in Google Scholar

2. Poonam; Sharma, K.; Arora, A.; Tripathi, S. K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825. https://doi.org/10.1016/j.est.2019.01.010.Search in Google Scholar

3. Ghosh, S.; Santhosh, R.; Jeniffer, S.; Raghavan, V.; Jacob, G.; Nanaji, K.; Kollu, P.; Jeong, S. K.; Grace, A. N. Natural Biomass Derived Hard Carbon and Activated Carbons as Electrochemical Supercapacitor Electrodes. Sci. Rep. 2019, 9 (1), 16315. https://doi.org/10.1038/s41598-019-52006-x.Search in Google Scholar PubMed PubMed Central

4. Luo, Y.; Li, D.; Chen, Y.; Sun, X.; Cao, Q.; Liu, X. The Performance of Phosphoric Acid in the Preparation of Activated Carbon-Containing Phosphorus Species from Rice Husk Residue. J. Mater. Sci. 2019, 54 (6), 5008–5021. https://doi.org/10.1007/s10853-018-03220-x.Search in Google Scholar

5. Forouzandeh, P.; Pillai, S. C. Two-Dimensional (2D) Electrode Materials for Supercapacitors. Mater. Today: Proc. 2021, 41, 498–505. https://doi.org/10.1016/j.matpr.2020.05.233.Search in Google Scholar

6. Tyagi, A.; Mishra, K.; Shukla, V. Structural and Electrochemical Properties of KOH-Activated Carbon Soot Derived from Sinapis Alba (Yellow Mustard Oil) for EDLC Application. J. Electron. Mater. 2022, 51, 5670–5685. https://doi.org/10.1007/s11664-022-09832-z.Search in Google Scholar

7. Salele Iro, Z. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. https://doi.org/10.20964/2016.12.50.Search in Google Scholar

8. Chiu, Y.-H.; Lin, L.-Y. Effect of Activating Agents for Producing Activated Carbon Using a Facile One-Step Synthesis with Waste Coffee Grounds for Symmetric Supercapacitors. J. Taiwan Inst. Chem. Eng. 2019, 101, 177–185. https://doi.org/10.1016/j.jtice.2019.04.050.Search in Google Scholar

9. Tamai, H.; Kunihiro, M.; Morita, M.; Yasuda, H. Mesoporous Activated Carbon as Electrode for Electric Double Layer Capacitor. J. Mater. Sci. 2005, 40 (14), 3703–3707. https://doi.org/10.1007/s10853-005-2838-2.Search in Google Scholar

10. Gao, Y.; Yue, Q.; Gao, B.; Li, A. Insight into Activated Carbon from Different Kinds of Chemical Activating Agents: A Review. Sci. Total Environ. 2020, 746, 141094. https://doi.org/10.1016/j.scitotenv.2020.141094.Search in Google Scholar PubMed

11. Oliveira, L. C. A.; Pereira, E.; Guimaraes, I. R.; Vallone, A.; Pereira, M.; Mesquita, J. P.; Sapag, K. Preparation of Activated Carbons from Coffee Husks Utilizing FeCl3 and ZnCl2 as Activating Agents. J. Hazard. Mater. 2009, 165 (1), 87–94. https://doi.org/10.1016/j.jhazmat.2008.09.064.Search in Google Scholar PubMed

12. Sivachidambaram, M.; Vijaya, J. J.; Niketha, K.; Kennedy, L. J.; Elanthamilan, E.; Merlin, J. P. Electrochemical Studies on Tamarindus Indica Fruit Shell Bio-Waste Derived Nanoporous Activated Carbons for Supercapacitor Applications. J. Nanosci. Nanotechnol. 2019, 19 (6), 3388–3397. https://doi.org/10.1166/jnn.2019.16115.Search in Google Scholar PubMed

13. Senthilkumar, S. T.; Selvan, R. K.; Melo, J. S. The Biomass Derived Activated Carbon for Supercapacitor. AIP Conf. Proc. 2013, 1538 (1), 124–127. https://doi.org/10.1063/1.4810042.Search in Google Scholar

14. Sun, Z.; Liao, J.; Sun, B.; He, M.; Pan, X.; Zhu, J.; Shi, C.; Jiang, Y. Nitrogen Self-Doped Porous Carbon Materials Derived from a New Biomass Source for Highly Stable Supercapacitors. Int. J. Electrochem. Sci. 2017, 12 (12), 12084–12097. https://doi.org/10.20964/2017.12.400.Search in Google Scholar

15. Khezami, L.; Chetouani, A.; Taouk, B.; Capart, R. Production and Characterisation of Activated Carbon from Wood Components in Powder: Cellulose, Lignin, Xylan. Powder Technol. 2005, 157 (1), 48–56. https://doi.org/10.1016/j.powtec.2005.05.009.Search in Google Scholar

16. Suhas; Gupta, V. K.; Carrott, P. J. M.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: A Review as Natural, Modified and Activated Carbon Adsorbent. Bioresour. Technol. 2016, 216, 1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106.Search in Google Scholar PubMed

17. Sermyagina, E.; Murashko, K.; Nevstrueva, D.; Pihlajamäki, A.; Vakkilainen, E. Conversion of Cellulose to Activated Carbons for High-Performance Supercapacitors. Agron. Res. 2020, 18 (3), 2197–2210. https://doi.org/10.15159/ar.20.163.Search in Google Scholar

18. Ou, Y.; Peng, C.; Lang, J.; Zhu, D.; Yan, X. Hierarchical Porous Activated Carbon Produced from Spinach Leaves as an Electrode Material for an Electric Double Layer Capacitor. N. Carbon Mater. 2014, 29 (3), 209–215. https://doi.org/10.1016/S1872-5805(14)60135-9.Search in Google Scholar

19. Rajabathar, J. R.; Manoharan, S.; J, J. V.; Al-Lohedan, H. A.; Arunachalam, P. Synthesis of Porous Carbon Nanostructure Formation from Peel Waste for Low Cost Flexible Electrode Fabrication Towards Energy Storage Applications. J. Energy Storage 2020, 32, 101735. https://doi.org/10.1016/j.est.2020.101735.Search in Google Scholar

20. Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A. F.; Maldonado-Hódar, F. J.; Carrasco-Marín, F. Activated Carbons from KOH and H3PO4-Activation of Olive Residues and its Application as Supercapacitor Electrodes. Electrochim. Acta 2017, 229, 219–228. https://doi.org/10.1016/j.electacta.2017.01.152.Search in Google Scholar

21. Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q. A Comparative Study of Chemical Treatment by FeCl3, MgCl2, and ZnCl2 on Microstructure, Surface Chemistry, and Double-Layercapacitance of Carbons from Waste Biomass. J. Mater. Res. 2010, 25 (8), 1451–1459. https://doi.org/10.1557/JMR.2010.0186.Search in Google Scholar

22. Tyagi, A.; Mishra, K.; Sharma, S.; Shukla, V. Performance Studies of an Electric Double-Layer Capacitor (EDLC) Fabricated Using Edible Oil-Derived Activated Carbon. J. Mater. Sci. Mater. Electron. 2021, 1–15. https://doi.org/10.1007/s10854-021-06978-0.Search in Google Scholar

23. Burton, A.; Accardi, R. J.; Lobo, R. F.; Falcioni, M.; Deem, M. W. MCM-47: A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chem. Mater. 2000, 12 (10), 2936–2942. https://doi.org/10.1021/cm000243q.Search in Google Scholar

24. Tran Thi Dieu, H.; Charoensook, K.; Tai, H.-C.; Lin, Y.-T.; Li, Y.-Y. Preparation of Activated Carbon Derived from Oil Palm Empty Fruit Bunches and its Modification by Nitrogen Doping for Supercapacitors. J. Porous Mater. 2021, 28 (1), 9–18. https://doi.org/10.1007/s10934-020-00957-2.Search in Google Scholar

25. Jain, H. A Review on Healing Properties of Tinospora Cordifolia (Indian Giloy). IJRASET 2021, 9 (5), 1114–1118. https://doi.org/10.22214/ijraset.2021.34467.Search in Google Scholar

26. Mutuma, B. K.; Sylla, N. F.; Bubu, A.; Ndiaye, N. M.; Santoro, C.; Brilloni, A.; Poli, F.; Manyala, N.; Soavi, F. Valorization of Biodigestor Plant Waste in Electrodes for Supercapacitors and Microbial Fuel Cells. Electrochim. Acta 2021, 391, 138960. https://doi.org/10.1016/j.electacta.2021.138960.Search in Google Scholar

27. Mourshed, M.; Niya, S. M. R.; Ojha, R.; Rosengarten, G.; Andrews, J.; Shabani, B. Carbon-Based Slurry Electrodes for Energy Storage and Power Supply Systems. Energy Storage Mater. 2021, 40, 461–489. https://doi.org/10.1016/j.ensm.2021.05.032.Search in Google Scholar

28. Ganash, E.; Al-Jabarti, G.; Altuwirqi, R. The Synthesis of Carbon-Based Nanomaterials by Pulsed Laser Ablation in Water. Mater. Res. Express 2019, 7, 015002. https://doi.org/10.1088/2053-1591/ab572b.Search in Google Scholar

29. Bucknum, M. J.; Castro, E. A. The Carbon Allotrope Hexagonite and its Potential Synthesis from Cold Compression of Carbon Nanotubes. J. Chem. Theory Comput. 2006, 2 (3), 775–781. https://doi.org/10.1021/ct060003n.Search in Google Scholar PubMed

30. Buasri, A.; Chaiyut, N.; Loryuenyong, V.; Rodklum, C.; Chaikwan, T.; Kumphan, N. Continuous Process for Biodiesel Production in Packed Bed Reactor from Waste Frying Oil Using Potassium Hydroxide Supported on Jatropha Curcas Fruit Shell as Solid Catalyst. Appl. Sci. 2012, 2, 641–653. https://doi.org/10.3390/app2030641.Search in Google Scholar

31. Castro, J. P.; Nobre, J. R. C.; Napoli, A.; Bianchi, M. L.; Moulin, J. C.; Chiou, B. S.; Williams, T. G.; Wood, D. F.; Avena-Bustillos, R. J.; Orts, W. J.; Tonoli, G. H. D. Massaranduba Sawdust: A Potential Source of Charcoal and Activated Carbon. Polymers 2019, 11 (8), 1276. https://doi.org/10.3390/polym11081276.Search in Google Scholar PubMed PubMed Central

32. Ma, C.; Wang, R.; Xie, Z.; Zhang, H.; Li, Z.; Shi, J. Preparation and Molten Salt-Assisted KOH Activation of Porous Carbon Nanofibers for Use as Supercapacitor Electrodes. J. Porous Mater. 2017, 24 (6), 1437–1445. https://doi.org/10.1007/s10934-017-0384-3.Search in Google Scholar

33. Sarwar, A.; Ali, M.; Khoja, A. H.; Nawar, A.; Waqas, A.; Liaquat, R.; Naqvi, S. R.; Asjid, M. Synthesis and Characterization of Biomass-Derived Surface-Modified Activated Carbon for Enhanced CO2 Adsorption. J. CO2 Util. 2021, 46, 101476. https://doi.org/10.1016/j.jcou.2021.101476.Search in Google Scholar

34. Tran, T.; Phạm, V. T.; Quynh, B.; Thanh Cong, H.; Tam, D.; Thuan, V.; Bach, L. G. Production of Activated Carbon from Sugarcane Bagasse by Chemical Activation with ZnCl2: Preparation and Characterization Study. Res. J. Chem. Sci. 2016, 6, 42–47.Search in Google Scholar

35. Chung, H.-Y.; Pan, G.-T.; Hong, Z.-Y.; Hsu, C.-T.; Chong, S.; Yang, T. C.-K.; Huang, C.-M. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors. Molecules 2020, 25 (18), 4050. https://doi.org/10.3390/molecules25184050.Search in Google Scholar PubMed PubMed Central

36. Wang, Z.; Zhang, J. Deposition of Hard Elastic Hydrogenated Fullerenelike Carbon Films. J. Appl. Phys. 2011, 109 (10), 103303. https://doi.org/10.1063/1.3590165.Search in Google Scholar

37. Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143 (1), 47–57. https://doi.org/10.1016/j.ssc.2007.03.052.Search in Google Scholar

38. Shen, S.; Zhu, C.; Guo, X.; Li, C.; Wen, Y.; Yang, H.-F. The Synergistic Mechanism of Phytic Acid Monolayers and Iodide Ions for Inhibition of Copper Corrosion in Acidic Media. RSC Adv. 2014, 4 (21), 10597–10606. https://doi.org/10.1039/C3RA47291D.Search in Google Scholar

39. El-Tabey, A. E.; Bedir, A. G.; Khamis, E. A.; Abd-El-Raouf, M.; Zahran, F.; Yousef, M. A.; Al-Sabbagh, A. M. Synthesis and Evaluation of New Poly Cationic Surfactants as Corrosion Inhibitors for Carbon Steel in Formation Water. Egypt. J. Chem. 2020, 63 (3), 833–850. https://doi.org/10.21608/ejchem.2019.11344.1730.Search in Google Scholar

40. Ruan, H.; Sun, B.; Jiang, J.; Zhang, W.; He, X.; Su, X.; Bian, J.; Gao, W. A Modified-Electrochemical Impedance Spectroscopy-Based Multi-Time-Scale Fractional-Order Model for Lithium-Ion Batteries. Electrochim. Acta 2021, 394, 139066. https://doi.org/10.1016/j.electacta.2021.139066.Search in Google Scholar

41. Conway, B. E. AC Impedance Behavior of Electrochemical Capacitors and Other Electrochemical Systems. In Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Conway, B. E., Ed.; Springer US: Boston, MA, 1999; pp. 479–524.10.1007/978-1-4757-3058-6_16Search in Google Scholar

42. Ates, M.; Uludag, N.; Sarac, A. Synthesis and Electropolymerization of 9-Tosyl-9h-Carbazole, ElectrochemicalImpedance Spectroscopic Study and Circuit Modelling. Fibers Polym. 2010, 12, 8–14. https://doi.org/10.1007/s12221-011-0008-5.Search in Google Scholar

43. Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F. A High-Performance Asymmetric Supercapacitor Based on Carbon and Carbon–MnO2 Nanofiber Electrodes. Carbon 2013, 61, 190–199. https://doi.org/10.1016/j.carbon.2013.04.084.Search in Google Scholar

44. Gerçel, Ö., Gerçel, H.F. Preparation and Characterization of Activated Carbon from Vegetable Waste by Microwave-Assisted and Conventional Heating Methods. Arab. J. Sci. Eng. 2016, 41, 2385–2392. https://doi.org/10.1007/s13369-015-1859-7.Search in Google Scholar

45. Sivachidambaram, M., Vijaya, J., John Kennedy, L., Jothiramalingam, R., Al-Lohedan, H.A., Munusamy, M.A., Elanthamilane, E., Merline, J.P. Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications. New J. Chem. 2017, 41 (10), 3939–3949. https://doi.org/10.1039/C6NJ03867K.Search in Google Scholar

46. Tsai, W.-T., Huang, P.-C., Lin, Y.-Q. Reusing Cow Manure for the Production of Activated Carbon Using Potassium Hydroxide (KOH) Activation Process and Its Liquid-Phase Adsorption Performance. Processes 2019, 7 (10), 737. https://doi.org/10.3390/pr7100737.Search in Google Scholar

47. Bal Altuntas, D., Nevruzoğlu, V., Dolumaci, M., Şafak, C. Synthesis and characterization of activated carbon produced from waste human hair mass using chemical activation. Carbon Lett. 2019, 30 (3), 307. https://doi.org/10.1007/s42823-019-00099-9.Search in Google Scholar

Received: 2023-07-20
Accepted: 2024-03-07
Published Online: 2024-10-01
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0228/pdf
Scroll to top button