Startseite Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys

  • Michael Ivanov , Natalia Usenko ORCID logo EMAIL logo und Natalia Kotova
Veröffentlicht/Copyright: 19. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The enthalpies of mixing in liquid alloys of the ternary Ag–Eu–Sn system were determined over a wide range of concentrations by means of isoperibolic calorimetry in the temperature range from 1313 to 1373 K. The partial enthalpies of each component of the ternary system were measured along the following sections: Δ H ̄ Ag along the section with xEu/xSn = 0.28/0.72 up to silver content of about xAg = 0.2 at 1373 K; Δ H ̄ Sn along three sections (xAg/xEu = 0.31/0.69, 0.50/0.50 and 0.70/0.30) up to xSn = 0.35 at 1373 K; Δ H ̄ Eu along the section xAg/xSn = 0.50/0.50 up to xEu = 0.25 at 1313 K. The enthalpies of mixing in the liquid Ag–Eu–Sn alloys show exothermic effects, being more pronounced in the vicinity of the Eu–Sn binary constituent. The minimum value of the integral enthalpy of about −60 kJ mol−1 is observed in the composition region of the congruently melting Eu2Sn phase.


Corresponding author: Natalia Usenko, Department of Chemistry, Taras Shevchenko National University, 64, Volodymirska St., 01601 Kyiv, Ukraine, E-mail:

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: M. Ivanov: general supervision, performing the experiments, providing resources, writing – original draft. N. Usenko: analyses of data, methodology, writing – review and editing. N. Kotova: analyses of data, performing computation, writing – review and editing.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The authors are grateful to the support by the National Academy of Sciences of Ukraine.

  5. Data availability: The authors declare that the data supporting the findings of this study are available within the paper.

Appendix A
Table A1:

Experimental data points of the partial enthalpies of mixing of silver Δ H ̄ Ag (1373 K) and europium Δ H ̄ Eu (1313 K) in the Ag−Eu−Sn system (kJ mol−1).

Δ H ̄ Ag for section with Δ H ̄ Eu for sections with
xSn/xEu = 0.72/0.28 xAg/xSn = 0.50/0.50
x Ag,mean a Δ H ̄ Ag x Eu,mean Δ H ̄ Eu
0.011 12.5 0.014 −98.1
0.018 14.3 0.024 −94.5
0.023 10.2 0.036 −100.8
0.031 6.4 0.047 −96.3
0.040 12.1 0.058 −93.0
0.048 10.2 0.070 −97.1
0.056 13.8 0.082 −90.2
0.062 8.6 0.093 −85.9
0.071 7.3 0.102 −92.8
0.08 10.6 0.111 −90.8
0.088 5.4 0.120 −78.4
0.096 8.4 0.128 −89.6
0.104 7.6
0.112 8.9 0.142 −71.4
0.118 3.6 0.151 −69.9
0.123 6.5 0.160 −77.6
0.128 7.8 0.170 −72.5
0.134 9.1 0.178 −73.6
0.138 2.9 0.184 −60.8
0.143 1.8 0.192 −68.1
0.15 5.4 0.198 −59.7
0.156 2.2 0.205 −68.1
0.161 4.4 0.211 −61.8
0.217 −69.4
0.222 −60.1
0.229 −65.3
  1. axi,mean – is the mean value of the molar fractions before and after the respective drop.

Table A2:

Experimental data points of the partial enthalpy of mixing of tin Δ H ̄ Sn in the Ag–Sn−Eu ternary system at 1373 K (kJ mol−1).

Δ H ̄ Sn for sections with xAg/xEu
0.31/0.69 0.50/0.50 0.70/0.30
x Sn,mean Δ H ̄ Sn x Sn,mean Δ H ̄ Sn x Sn,mean Δ H ̄ Sn
0.018 −126.1 0.021 −98.6 0.016 −36.1
0.027 −132.9 0.032 −90.9 0.023 −30.3
0.035 −127.2 0.044 −85.8 0.032 −32.1
0.043 −130.6 0.053 −94.1 0.041 −38.6
0.052 −122.1 0.064 −90.0 0.049 −30.9
0.060 −130.0 0.075 −79.9 0.058 −36.1
0.069 −130.8 0.086 −73.5 0.070 −29.6
0.076 −119.6 0.095 −81.3 0.079 −25.0
0.086 −118.3 0.104 −79.1 0.088 −20.4
0.094 −122.5 0.113 −67.6 0.097 −27.4
0.103 −116.1 0.120 −71.3 0.106 −20.6
0.113 −108.4 0.126 −72.2
0.122 −121.5 0.131 −75.6 0.147 −13.5
0.131 −115.4 0.160 −9.8
0.139 −104.7 0.230 −43.3 0.170 −7.0
0.148 −116.9 0.240 −40.0 0.179 −10.3
0.157 −115.5 0.249 −50.6 0.190 −7.6
0.163 −104.6 0.257 −48.9 0.200 −1.8
0.265 −40.1 0.212 2.7
0.210 −93.4 0.273 −26.6 0.220 −4.6
0.220 −90.6 0.281 −30.0 0.227 −2.1
0.231 −87.8 0.290 −22.9 0.235 1.7
0.240 −92.1 0.298 −33.7 0.244 1.3
0.251 −80.0 0.306 −34.4 0.252 2.7
0.260 −81.4 0.312 −20.1 0.260 1.2
0.269 −69.1 0.320 −16.2 0.265 2.4
0.278 −73.4 0.326 −19.4 0.270 3.2
0.287 −69.9 0.333 −17.4
0.294 −60.1 0.340 −22.8
0.303 −68.4
0.313 −61.3
0.324 −60.2
0.334 −53.2
0.342 −52.6
0.346 54.8

References

1. Łątka, K., Przewoźnik, J., Verbovytskyy, Y., Gonçalves, A. P. J. Alloys Comp. 2015, 650, 572. https://doi.org/10.1016/j.jallcom.2015.08.024.Suche in Google Scholar

2. Rossi, P., Zotov, N., Mittemeijer, E. J. Surf. Coat. Tech. 2016, 295, 88. https://doi.org/10.1016/j.surfcoat.2015.10.057.Suche in Google Scholar

3. Drienovsky, M., Trnkova, L. R., Ozvold, M., Cernickova, I., Palcut, M., Janovec, J. J. Therm. Anal. Calorim. 2016, 125, 1009. https://doi.org/10.1007/s10973-016-5482-y.Suche in Google Scholar

4. Yang, W., Du, Z., Yu, S., Li, Y., Feng, J., Wei, X., Li, Q., Zhan, Y. Materials 2019, 12, 3731. https://doi.org/10.3390/ma12223731.Suche in Google Scholar PubMed PubMed Central

5. Ivanov, M., Usenko, N., Kotova, N., Golovataya, N. Int. J. Mater. Res. (formerly Z. Metallkd.) 2019, 110, 1058. https://doi.org/10.3139/146.111833.Suche in Google Scholar

6. Ivanov, M., Usenko, N., Kotova, N. Int. J. Mater. Res. (formerly Z. Metallkd.) 2020, 111, 273. https://doi.org/10.3139/146.111895.Suche in Google Scholar

7. Ivanov, M., Usenko, N., Kotova, N. Int. J. Mater. Res. (formerly Z. Metallkd.) 2021, 112, 735. https://doi.org/10.1515/ijmr-2021-8299.Suche in Google Scholar

8. Sim, K., Lee, J. J. Alloys Comp. 2014, 590, 140. https://doi.org/10.1016/j.jallcom.2013.12.101.Suche in Google Scholar

9. Fima, P. Appl. Surf. Sci. 2011, 257, 3265. https://doi.org/10.1016/j.apsusc.2010.11.002.Suche in Google Scholar

10. Flandorfer, H., Luef, C., Saeed, U. J. Non-Cryst. Sol. 2008, 354, 2953–2972. https://doi.org/10.1016/j.jnoncrysol.2007.12.009.Suche in Google Scholar

11. Oleinik, K., Bykov, A., Pastukhov, E. J. Therm. Anal. Calorim. 2017, 133, 1129. https://doi.org/10.1007/s10973-017-6838-7.Suche in Google Scholar

12. Bhuiyan, G. M., Ziauddin Ahmed, A. Z. Phys. B 2007, 390, 377. https://doi.org/10.1016/j.physb.2006.08.041.Suche in Google Scholar

13. del Rio, B. G., Calderín, L., González, L. E., González, D. J. J. Non-Cryst. Sol. 2017, 473, 179. https://doi.org/10.1016/j.jnoncrysol.2017.08.008.Suche in Google Scholar

14. Arai, Y., Satomura, A., Shirakawa, Y., Tamaki, S. J. Phys. Soc. Jpn. 1996, 65, 3301. https://doi.org/10.1143/JPSJ.65.3301.Suche in Google Scholar

15. Bychkov, Y., Belaschenko, D. Fiz. Met. Metalloved. 1972, 33, 763.Suche in Google Scholar

16. Manasijević, D., Balanović, L., Marković, J., Gorgievski, M., Stamenković, U., Đorđević, A., Minić, D., Ćosović, V. Solid State Sci 2021, 119, 106685. https://doi.org/10.1016/j.solidstatesciences.2021.106685.Suche in Google Scholar

17. Ivanov, M., Berezutski, V., Usenko, N. Int. J. Mater. Res. 2009, 100, 1001. https://doi.org/10.3139/146.110144.Suche in Google Scholar

18. Massalski, T. B., Ed. Binary Alloy Phase Diagrams, 1st ed.; ASM International: Metals Park, OH, 1986.Suche in Google Scholar

19. Palenzona, A., Manfrinetti, P., Fornasini, M. L. J. Alloys Comp. 1998, 280, 211. https://doi.org/10.1016/S0925-8388(98)00692-6.Suche in Google Scholar

20. Sudavtsova, V. S., Ivanov, M. I., Berezutski, V. V., Kudin, V. G., Shevchenko, M. A. Rus. J. Phys. Chem. 2011, 85, 2394. https://doi.org/10.1134/S0036024411120314.Suche in Google Scholar

21. Colinet, C. J. All. Comp. 1995, 225, 409. https://doi.org/10.1016/0925-8388(94)07087-3.Suche in Google Scholar

22. Liu, L., Li, C., Wang, F., Du, Z., Zhang, W. J. Alloys Comp. 2004, 379, 148. https://doi.org/10.1016/j.jallcom.2004.02.012.Suche in Google Scholar

23. U.S. Department of Energy. Materials data on EuAg2Sn by materials project; https://doi.org/10.17188/1310497.Suche in Google Scholar

24. Usenko, N. I., Ivanov, M. I., Petiuh, V. M., Witusiewicz, V. T. J. Alloys Compd. 1993, 190, 149. https://doi.org/10.1016/0925-8388(93)90391-Y.Suche in Google Scholar

25. Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Florida, 2003.Suche in Google Scholar

26. Dinsdale, A. T. Calphad 1991, 15, 317. https://doi.org/10.1016/0364-5916(91)90030-N.Suche in Google Scholar

27. Bale, C. W., Pelton, A. D. Metall. Trans. 1974, 5, 2323. https://doi.org/10.1007/BF02644013.Suche in Google Scholar

28. Darken, L. S. J. Am. Chem. Soc. 1950, 72, 2909. https://doi.org/10.1021/ja01163α030.10.1021/ja01163a030Suche in Google Scholar

29. Hillert, M. Calphad 1980, 4, 1. https://doi.org/10.1016/0364-5916(80)90016-4.Suche in Google Scholar

30. https://www.webelements.com/silver/electronegativity.html; https://www.webelements.com/europium/electronegativity.html; https://www.webelements.com/tin/electronegativity.html.Suche in Google Scholar

31. Ivanov, M., Witusiewicz, V. J. Alloys Comp. 1992, 223, 255. https://doi.org/10.1016/0925-8388(92)90012-X.Suche in Google Scholar

32. Sudavtsova, V. S., Romanova, L. O., Kudin, V. G., Ivanov, M. I., Kozorezov, A. S. Powder Metall. Met. Ceram. 2020, 59, 445. https://doi.org/10.1007/s11106-020-00178-x.Suche in Google Scholar

33. Stegemann, F., Block, T., Klenner, S., Janka, O. Chem. Eur. J. 2019, 25, 3505. https://doi.org/10.1002/chem.201806297.Suche in Google Scholar PubMed

34. Gschneidner, K. A. J. Less-Com. Met. 1969, 17, 13. https://doi.org/10.1016/0022-5088(69)90032-0.Suche in Google Scholar

35. Melsen, J., Wills, J. M., Johanson, B., Eriksson, O. J. Alloys Comp. 1994, 209, 15. https://doi.org/10.1016/0925-8388(94)91071-5.Suche in Google Scholar

36. Hotta, T. J. Phys. Soc. Japan. 2015, 84, 114707. https://doi.org/10.7566/JPSJ.84.114707.Suche in Google Scholar

Received: 2023-02-17
Accepted: 2023-05-23
Published Online: 2023-12-19
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0063/html?lang=de
Button zum nach oben scrollen