Abstract
Bone disorders and conditions have been increasing at an alarming rate all over the world, especially in niches where increased obesity and poor physical activity have been prevailing. Synthetic nanohydroxyapatite (HAp) is one of the remedies to reconstruct bone formation. Its rate of dissolution and compatibility is in the moderately acceptable range. The doping of HAp with bone-forming ions can make them highly biologically compatible materials. In the present work, we formulated HAp doped with essential micronutrients of strontium and copper. Nanoglobular Sr and Cu doped HAp (SC-HAp) with an average size of 30 nm was prepared. The SC-HAp was partially crystalline and amorphous, which could influence the dissolution rate of the material. The biomineralization ability of the SC-HAp seemed to be effective in apatite formation. The calcium, collagen and alkaline phosphatase secretion levels after the addition of SC-HAp on MG63 cells indicate the bone-forming capacity of the material. Further, the cell proliferation rate was enhanced compared to the control with SC-HAp.
Acknowledgments
We thank White Lab of Saveetha Dental College and Hospitals for providing material characterization facilities.
-
Research ethics: Not applicable.
-
Author contributions: Shivani Sathyanarayanan: Methodology; Saranya Kannan: Conceptualization, Writing – original draft. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Amini, A. R., Laurencin, C. T., Nukavarapu, S. P. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. https://doi.org/10.1615/critrevbiomedeng.v40.i5.10.Search in Google Scholar PubMed PubMed Central
2. Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N., Ramasamy, K., Srinivasan, N., Partridge, N., Selvamurugan, N. J. Nanosci. Nanotechnol. 2010, 6, 333–339. https://doi.org/10.1166/jbn.2010.1138.Search in Google Scholar PubMed
3. Ramesh, N., Moratti, S. C., Dias, G. J. J. Biomed. Mater. Res. B Appl. 2018, 106, 2046–2057. https://doi.org/10.1002/jbm.b.33950.Search in Google Scholar PubMed
4. Abdollahi asl, M., Ghomi, H. Int. J. Mater. Res. 2020, 111, 711–718. https://doi.org/10.3139/146.111937.Search in Google Scholar
5. Pogosova, M., González, L. Ceram. Int. 2018, 44, 20140–20147. https://doi.org/10.1016/j.ceramint.2018.07.307.Search in Google Scholar
6. Shu, X., Liao, J., Wang, L., Shi, Q., Xie, X. ACS Biomater. Sci. Eng. 2020, 6, 1920–1930. https://doi.org/10.1021/acsbiomaterials.0c00096.Search in Google Scholar PubMed
7. Baslayici, S., Bugdayci, M., Benzesik, K., Yucel, O., Acma, M. E. Int. J. Mater. Res. 2022, 113, 93–100. https://doi.org/10.1515/ijmr-2021-8310.Search in Google Scholar
8. Su, J., Teng, J., Xu, Z., Li, Y. Int. J. Mater. Res. 2020, 111, 621–631. https://doi.org/10.3139/146.111930.Search in Google Scholar
9. Valtanen, R. S., Yang, Y. P., Gurtner, G. C., Maloney, W. J., Lowenberg, D. W. Injury 2021, 52, S72–S77. https://doi.org/10.1016/j.injury.2020.07.040.Search in Google Scholar PubMed
10. Guillen-Romero, L. D., Oropeza-Guzmán, M. T., López-Maldonado, E. A., Iglesias, A. L., Paz-González, J. A., Ng, T., Serena-Gómez, E., Villarreal-Gómez, L. J. J. Appl. Biomater. Funct. Mater. 2019, 17, 1–10. https://doi.org/10.1177/2280800018817463.Search in Google Scholar PubMed
11. Shen, Q., Qi, Y., Kong, Y., Bao, H., Wang, Y., Dong, A., Wu, H., Xu, Y. Front. Bioeng. Biotechnol. 2022, 9, 795425. https://doi.org/10.3389/fbioe.2021.795425.Search in Google Scholar PubMed PubMed Central
12. Mitra, D., Kang, E.-T., Neoh, K. G. ACS Appl. Mater. Inter. 2019, 12, 21159–21182. https://doi.org/10.1021/acsami.9b17815.Search in Google Scholar PubMed
13. Park, J. W., Kim, Y. J., Jang, J. H., Song, H. J. Biomed. Mater. Res. A. 2013, 101, 298–306. https://doi.org/10.1002/jbm.a.34433.Search in Google Scholar PubMed
14. Jiménez, M., Abradelo, C., San Román, J., Rojo, L. J. Mater. Chem. B 2019, 7, 1974–1985. https://doi.org/10.1039/C8TB02738B.Search in Google Scholar
15. Wang, C., Chen, B., Wang, W., Zhang, X., Hu, T., He, Y., Lin, K., Liu, X. Mater. Sci. Eng. C. 2019, 103, 109833. https://doi.org/10.1016/j.msec.2019.109833.Search in Google Scholar PubMed
16. Zeng, J., Guo, J., Sun, Z., Deng, F., Ning, C., Xie, Y. Bioact. Mater. 2020, 5, 435–446. https://doi.org/10.1016/j.bioactmat.2020.03.008.Search in Google Scholar PubMed PubMed Central
17. Geng, Z., Ji, L., Li, Z., Wang, J., He, H., Cui, Z., Yang, X. C., Liu, C. Bioact. Mater. 2021, 6, 905–915. https://doi.org/10.1016/j.bioactmat.2020.09.024.Search in Google Scholar PubMed PubMed Central
18. Cheshmedzhieva, D., Ilieva, S., Permyakov, E. A., Permyakov, S. E., Dudev, T. Biomolecules 2021, 11, 1576. https://doi.org/10.3390/biom11111576.Search in Google Scholar PubMed PubMed Central
19. Wu, Y., Adeeb, S. M., Duke, M. J., Munoz-Paniagua, D., Doschak, M. R. J. Pharm. Pharm. Sci. 2013, 16, 52–64. https://doi.org/10.18433/J3C59H.Search in Google Scholar
20. Kargozar, S., Montazerian, M., Fiume, E., Baino, F. Front. Bioeng. Biotechnol. 2019, 7, 161. https://doi.org/10.3389/fbioe.2019.00161.Search in Google Scholar PubMed PubMed Central
21. Naruphontjirakul, P., Porter, A. E., Jones, J. R. Acta Biomater. 2018, 66, 67–80. https://doi.org/10.1016/j.actbio.2017.11.008.Search in Google Scholar PubMed
22. Saranya, K., Kalaiyarasan, M., Chatterjee, S., Rajendran, N. Mater. Corros. 2019, 70, 698–710. https://doi.org/10.1002/maco.201810360.Search in Google Scholar
23. Algul, D., Sipahi, H., Aydin, A., Kelleci, F., Ozdatli, S., Yener, F. G. Inter. J. Bio. Macromol. 2015, 79, 363–369. https://doi.org/10.1016/j.ijbiomac.2015.05.005.Search in Google Scholar PubMed
24. Bargavi, P., Chitra, S., Durgalakshmi, D., Radha, G., Balakumar, S. Zirconia reinforced bio-active glass coating by spray pyrolysis: structure, surface topography, in-vitro biological evaluation and antibacterial activities. Mater. Today Commun. 2020, 25, 101253. https://doi.org/10.1016/j.mtcomm.2020.101253.Search in Google Scholar
25. Krishnamoorthy, E., Sugumaran, V., Gosala, R., Purushothaman, B., Subramanian, B. Influence of varying thermal treatment on bioactive material with equal Ca/P ratio: a local drug delivery system for bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 402–415. https://doi.org/10.1002/jbm.b.35159.Search in Google Scholar PubMed
26. Hou, Q., Rehman, M. L. U., Bai, X., Qian, H., Lai, R., Xia, T., Yu, G., Tang, Y., Xie, H., Ju, M. Fuel 2023, 338, 127308. https://doi.org/10.1016/j.fuel.2022.127308.Search in Google Scholar
27. Balu, S., Sundaradoss, M. V., Andra, S., Jeevanandam, J. Beilstein J. Nanotechnol. 2020, 11, 285–295. https://doi.org/10.3762/bjnano.11.21.Search in Google Scholar PubMed PubMed Central
28. Agilan, P., Saranya, K., Rajendran, N. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127489. https://doi.org/10.1016/j.colsurfa.2021.127489.Search in Google Scholar
29. Saito, K., Kagawa, S., Ogasawara, M., Kato, S. J. Solid State Chem. 2023, 317, 123673. https://doi.org/10.1016/j.jssc.2022.123673.Search in Google Scholar
30. Saranya, K., Bhuvaneswari, S., Chatterjee, S., Rajendran, N. J. Mag. Alloys 2022, 10, 1109–1123. https://doi.org/10.1016/j.jma.2020.11.011.Search in Google Scholar
31. Rajabnejadkeleshteri, A., Kamyar, A., Khakbiz, M., Basiri, H. Microchem. J. 2020, 153, 104485. https://doi.org/10.1016/j.microc.2019.104485.Search in Google Scholar
32. Ressler, A., Ivanković, T., Ivanišević, I., Cvetnić, M., Antunović, M., Urlić, I., Ivanković, H., Ivanković, M. Ceram. Int. 2023, 49, 11005–11017. https://doi.org/10.1016/j.ceramint.2022.11.295.Search in Google Scholar
33. Vahabzadeh, S., Roy, M., Bandyopadhyay, A., Bose, S. Acta Biomater. 2015, 17, 47–55. https://doi.org/10.1016/j.actbio.2015.01.022.Search in Google Scholar PubMed PubMed Central
34. Huang, Y., Hao, M., Nian, X., Qiao, H., Zhang, X., Zhang, X., Song, G., Guo, J., Pang, X., Zhang, H. Ceram. Int. 2016, 42, 11876–11888. https://doi.org/10.1016/j.ceramint.2016.04.110.Search in Google Scholar
35. Conz, M. B., Granjeiro, J. M., Soares, G. d.A. J. Appl. Oral Sci. 2011, 19, 337–342. https://doi.org/10.1590/S1678-77572011005000007.Search in Google Scholar
36. Carvalho, V. S., Araujo dos Santos, E., Resende, C. X. Key Eng. Mater. 2012, 493, 513–518. https://doi.org/10.4028/www.scientific.net/KEM.493-494.513.Search in Google Scholar
37. Metwally, S., Ferraris, S., Spriano, S., Krysiak, Z. J., Kaniuk, Ł., Marzec, M. M., Kim, S. K., Szewczyk, P. K., Gruszczyński, A., Wytrwal-Sarna, M., Karbowniczek, J. E., Bernasik, A., Kar-Narayan, S., Stachewicz, U. Mater. Des. 2020, 194, 108915. https://doi.org/10.1016/j.matdes.2020.108915.Search in Google Scholar
38. Szewczyk, P. K., Metwally, S., Karbowniczek, J. E., Marzec, M. M., Stodolak-Zych, E., Gruszczyński, A., Bernasik, A., Stachewicz, U. ACS Biomater. Sci. Eng. 2018, 5, 582–593. https://doi.org/10.1021/acsbiomaterials.8b01108.Search in Google Scholar PubMed
39. Ullah, I., Hussain, Z., Ullah, S., ul ain Zahra, Q., Zhang, Y., Mehmood, S., Liu, X., Kamya, E., Ghani, M. W., Mansoorianfar, M. J. Mater. Chem. B 2023, 11, 2608–2618. https://doi.org/10.1039/D2TC04306H.Search in Google Scholar
40. Alasvand, N., Simorgh, S., Kebria, M. M., Bozorgi, A., Moradi, S., Sarmadi, V. H., Ebrahimzadeh, K., Amini, N., Kermani, F., Kargozar, S., Brouki Milan, P. Open Ceram. 2023, 14, 100358. https://doi.org/10.1016/j.oceram.2023.100358.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- In Memoriam Prof. Günter Petzow
- Review
- Potential of multifunctional electrospun nanofibers in cancer management
- Original Papers
- Eco-friendly palm oil directed synthesis of mesoporous titania for photocatalytic application
- Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties
- Strontium and copper co-doped nanohydroxyapatite for bone augmentation
- Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method
- Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
- Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
- Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- In Memoriam Prof. Günter Petzow
- Review
- Potential of multifunctional electrospun nanofibers in cancer management
- Original Papers
- Eco-friendly palm oil directed synthesis of mesoporous titania for photocatalytic application
- Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties
- Strontium and copper co-doped nanohydroxyapatite for bone augmentation
- Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method
- Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
- Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
- Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states
- News
- DGM – Deutsche Gesellschaft für Materialkunde