Abstract
The enthalpies of mixing in liquid alloys of the ternary Ag–Eu–Sn system were determined over a wide range of concentrations by means of isoperibolic calorimetry in the temperature range from 1313 to 1373 K. The partial enthalpies of each component of the ternary system were measured along the following sections:
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: M. Ivanov: general supervision, performing the experiments, providing resources, writing – original draft. N. Usenko: analyses of data, methodology, writing – review and editing. N. Kotova: analyses of data, performing computation, writing – review and editing.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The authors are grateful to the support by the National Academy of Sciences of Ukraine.
-
Data availability: The authors declare that the data supporting the findings of this study are available within the paper.
Experimental data points of the partial enthalpies of mixing of silver
|
|
||
---|---|---|---|
xSn/xEu = 0.72/0.28 | xAg/xSn = 0.50/0.50 | ||
x Ag,mean a |
|
x Eu,mean |
|
0.011 | 12.5 | 0.014 | −98.1 |
0.018 | 14.3 | 0.024 | −94.5 |
0.023 | 10.2 | 0.036 | −100.8 |
0.031 | 6.4 | 0.047 | −96.3 |
0.040 | 12.1 | 0.058 | −93.0 |
0.048 | 10.2 | 0.070 | −97.1 |
0.056 | 13.8 | 0.082 | −90.2 |
0.062 | 8.6 | 0.093 | −85.9 |
0.071 | 7.3 | 0.102 | −92.8 |
0.08 | 10.6 | 0.111 | −90.8 |
0.088 | 5.4 | 0.120 | −78.4 |
0.096 | 8.4 | 0.128 | −89.6 |
0.104 | 7.6 | – | – |
0.112 | 8.9 | 0.142 | −71.4 |
0.118 | 3.6 | 0.151 | −69.9 |
0.123 | 6.5 | 0.160 | −77.6 |
0.128 | 7.8 | 0.170 | −72.5 |
0.134 | 9.1 | 0.178 | −73.6 |
0.138 | 2.9 | 0.184 | −60.8 |
0.143 | 1.8 | 0.192 | −68.1 |
0.15 | 5.4 | 0.198 | −59.7 |
0.156 | 2.2 | 0.205 | −68.1 |
0.161 | 4.4 | 0.211 | −61.8 |
– | – | 0.217 | −69.4 |
– | – | 0.222 | −60.1 |
– | – | 0.229 | −65.3 |
-
axi,mean – is the mean value of the molar fractions before and after the respective drop.
Experimental data points of the partial enthalpy of mixing of tin
|
|||||
---|---|---|---|---|---|
0.31/0.69 | 0.50/0.50 | 0.70/0.30 | |||
x Sn,mean |
|
x Sn,mean |
|
x Sn,mean |
|
0.018 | −126.1 | 0.021 | −98.6 | 0.016 | −36.1 |
0.027 | −132.9 | 0.032 | −90.9 | 0.023 | −30.3 |
0.035 | −127.2 | 0.044 | −85.8 | 0.032 | −32.1 |
0.043 | −130.6 | 0.053 | −94.1 | 0.041 | −38.6 |
0.052 | −122.1 | 0.064 | −90.0 | 0.049 | −30.9 |
0.060 | −130.0 | 0.075 | −79.9 | 0.058 | −36.1 |
0.069 | −130.8 | 0.086 | −73.5 | 0.070 | −29.6 |
0.076 | −119.6 | 0.095 | −81.3 | 0.079 | −25.0 |
0.086 | −118.3 | 0.104 | −79.1 | 0.088 | −20.4 |
0.094 | −122.5 | 0.113 | −67.6 | 0.097 | −27.4 |
0.103 | −116.1 | 0.120 | −71.3 | 0.106 | −20.6 |
0.113 | −108.4 | 0.126 | −72.2 | – | – |
0.122 | −121.5 | 0.131 | −75.6 | 0.147 | −13.5 |
0.131 | −115.4 | – | – | 0.160 | −9.8 |
0.139 | −104.7 | 0.230 | −43.3 | 0.170 | −7.0 |
0.148 | −116.9 | 0.240 | −40.0 | 0.179 | −10.3 |
0.157 | −115.5 | 0.249 | −50.6 | 0.190 | −7.6 |
0.163 | −104.6 | 0.257 | −48.9 | 0.200 | −1.8 |
– | – | 0.265 | −40.1 | 0.212 | 2.7 |
0.210 | −93.4 | 0.273 | −26.6 | 0.220 | −4.6 |
0.220 | −90.6 | 0.281 | −30.0 | 0.227 | −2.1 |
0.231 | −87.8 | 0.290 | −22.9 | 0.235 | 1.7 |
0.240 | −92.1 | 0.298 | −33.7 | 0.244 | 1.3 |
0.251 | −80.0 | 0.306 | −34.4 | 0.252 | 2.7 |
0.260 | −81.4 | 0.312 | −20.1 | 0.260 | 1.2 |
0.269 | −69.1 | 0.320 | −16.2 | 0.265 | 2.4 |
0.278 | −73.4 | 0.326 | −19.4 | 0.270 | 3.2 |
0.287 | −69.9 | 0.333 | −17.4 | – | – |
0.294 | −60.1 | 0.340 | −22.8 | – | – |
0.303 | −68.4 | – | – | – | – |
0.313 | −61.3 | – | – | – | – |
0.324 | −60.2 | – | – | – | – |
0.334 | −53.2 | – | – | – | – |
0.342 | −52.6 | – | – | – | – |
0.346 | 54.8 | – | – | – | – |
References
1. Łątka, K., Przewoźnik, J., Verbovytskyy, Y., Gonçalves, A. P. J. Alloys Comp. 2015, 650, 572. https://doi.org/10.1016/j.jallcom.2015.08.024.Search in Google Scholar
2. Rossi, P., Zotov, N., Mittemeijer, E. J. Surf. Coat. Tech. 2016, 295, 88. https://doi.org/10.1016/j.surfcoat.2015.10.057.Search in Google Scholar
3. Drienovsky, M., Trnkova, L. R., Ozvold, M., Cernickova, I., Palcut, M., Janovec, J. J. Therm. Anal. Calorim. 2016, 125, 1009. https://doi.org/10.1007/s10973-016-5482-y.Search in Google Scholar
4. Yang, W., Du, Z., Yu, S., Li, Y., Feng, J., Wei, X., Li, Q., Zhan, Y. Materials 2019, 12, 3731. https://doi.org/10.3390/ma12223731.Search in Google Scholar PubMed PubMed Central
5. Ivanov, M., Usenko, N., Kotova, N., Golovataya, N. Int. J. Mater. Res. (formerly Z. Metallkd.) 2019, 110, 1058. https://doi.org/10.3139/146.111833.Search in Google Scholar
6. Ivanov, M., Usenko, N., Kotova, N. Int. J. Mater. Res. (formerly Z. Metallkd.) 2020, 111, 273. https://doi.org/10.3139/146.111895.Search in Google Scholar
7. Ivanov, M., Usenko, N., Kotova, N. Int. J. Mater. Res. (formerly Z. Metallkd.) 2021, 112, 735. https://doi.org/10.1515/ijmr-2021-8299.Search in Google Scholar
8. Sim, K., Lee, J. J. Alloys Comp. 2014, 590, 140. https://doi.org/10.1016/j.jallcom.2013.12.101.Search in Google Scholar
9. Fima, P. Appl. Surf. Sci. 2011, 257, 3265. https://doi.org/10.1016/j.apsusc.2010.11.002.Search in Google Scholar
10. Flandorfer, H., Luef, C., Saeed, U. J. Non-Cryst. Sol. 2008, 354, 2953–2972. https://doi.org/10.1016/j.jnoncrysol.2007.12.009.Search in Google Scholar
11. Oleinik, K., Bykov, A., Pastukhov, E. J. Therm. Anal. Calorim. 2017, 133, 1129. https://doi.org/10.1007/s10973-017-6838-7.Search in Google Scholar
12. Bhuiyan, G. M., Ziauddin Ahmed, A. Z. Phys. B 2007, 390, 377. https://doi.org/10.1016/j.physb.2006.08.041.Search in Google Scholar
13. del Rio, B. G., Calderín, L., González, L. E., González, D. J. J. Non-Cryst. Sol. 2017, 473, 179. https://doi.org/10.1016/j.jnoncrysol.2017.08.008.Search in Google Scholar
14. Arai, Y., Satomura, A., Shirakawa, Y., Tamaki, S. J. Phys. Soc. Jpn. 1996, 65, 3301. https://doi.org/10.1143/JPSJ.65.3301.Search in Google Scholar
15. Bychkov, Y., Belaschenko, D. Fiz. Met. Metalloved. 1972, 33, 763.Search in Google Scholar
16. Manasijević, D., Balanović, L., Marković, J., Gorgievski, M., Stamenković, U., Đorđević, A., Minić, D., Ćosović, V. Solid State Sci 2021, 119, 106685. https://doi.org/10.1016/j.solidstatesciences.2021.106685.Search in Google Scholar
17. Ivanov, M., Berezutski, V., Usenko, N. Int. J. Mater. Res. 2009, 100, 1001. https://doi.org/10.3139/146.110144.Search in Google Scholar
18. Massalski, T. B., Ed. Binary Alloy Phase Diagrams, 1st ed.; ASM International: Metals Park, OH, 1986.Search in Google Scholar
19. Palenzona, A., Manfrinetti, P., Fornasini, M. L. J. Alloys Comp. 1998, 280, 211. https://doi.org/10.1016/S0925-8388(98)00692-6.Search in Google Scholar
20. Sudavtsova, V. S., Ivanov, M. I., Berezutski, V. V., Kudin, V. G., Shevchenko, M. A. Rus. J. Phys. Chem. 2011, 85, 2394. https://doi.org/10.1134/S0036024411120314.Search in Google Scholar
21. Colinet, C. J. All. Comp. 1995, 225, 409. https://doi.org/10.1016/0925-8388(94)07087-3.Search in Google Scholar
22. Liu, L., Li, C., Wang, F., Du, Z., Zhang, W. J. Alloys Comp. 2004, 379, 148. https://doi.org/10.1016/j.jallcom.2004.02.012.Search in Google Scholar
23. U.S. Department of Energy. Materials data on EuAg2Sn by materials project; https://doi.org/10.17188/1310497.Search in Google Scholar
24. Usenko, N. I., Ivanov, M. I., Petiuh, V. M., Witusiewicz, V. T. J. Alloys Compd. 1993, 190, 149. https://doi.org/10.1016/0925-8388(93)90391-Y.Search in Google Scholar
25. Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Florida, 2003.Search in Google Scholar
26. Dinsdale, A. T. Calphad 1991, 15, 317. https://doi.org/10.1016/0364-5916(91)90030-N.Search in Google Scholar
27. Bale, C. W., Pelton, A. D. Metall. Trans. 1974, 5, 2323. https://doi.org/10.1007/BF02644013.Search in Google Scholar
28. Darken, L. S. J. Am. Chem. Soc. 1950, 72, 2909. https://doi.org/10.1021/ja01163α030.10.1021/ja01163a030Search in Google Scholar
29. Hillert, M. Calphad 1980, 4, 1. https://doi.org/10.1016/0364-5916(80)90016-4.Search in Google Scholar
30. https://www.webelements.com/silver/electronegativity.html; https://www.webelements.com/europium/electronegativity.html; https://www.webelements.com/tin/electronegativity.html.Search in Google Scholar
31. Ivanov, M., Witusiewicz, V. J. Alloys Comp. 1992, 223, 255. https://doi.org/10.1016/0925-8388(92)90012-X.Search in Google Scholar
32. Sudavtsova, V. S., Romanova, L. O., Kudin, V. G., Ivanov, M. I., Kozorezov, A. S. Powder Metall. Met. Ceram. 2020, 59, 445. https://doi.org/10.1007/s11106-020-00178-x.Search in Google Scholar
33. Stegemann, F., Block, T., Klenner, S., Janka, O. Chem. Eur. J. 2019, 25, 3505. https://doi.org/10.1002/chem.201806297.Search in Google Scholar PubMed
34. Gschneidner, K. A. J. Less-Com. Met. 1969, 17, 13. https://doi.org/10.1016/0022-5088(69)90032-0.Search in Google Scholar
35. Melsen, J., Wills, J. M., Johanson, B., Eriksson, O. J. Alloys Comp. 1994, 209, 15. https://doi.org/10.1016/0925-8388(94)91071-5.Search in Google Scholar
36. Hotta, T. J. Phys. Soc. Japan. 2015, 84, 114707. https://doi.org/10.7566/JPSJ.84.114707.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- In Memoriam Prof. Günter Petzow
- Review
- Potential of multifunctional electrospun nanofibers in cancer management
- Original Papers
- Eco-friendly palm oil directed synthesis of mesoporous titania for photocatalytic application
- Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties
- Strontium and copper co-doped nanohydroxyapatite for bone augmentation
- Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method
- Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
- Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
- Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- In Memoriam Prof. Günter Petzow
- Review
- Potential of multifunctional electrospun nanofibers in cancer management
- Original Papers
- Eco-friendly palm oil directed synthesis of mesoporous titania for photocatalytic application
- Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties
- Strontium and copper co-doped nanohydroxyapatite for bone augmentation
- Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method
- Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
- Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
- Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states
- News
- DGM – Deutsche Gesellschaft für Materialkunde