Abstract
Sn1−x Fe x O2 (x = 0, 1, 2, 3, and 4 %) of the diamagnetic/ferromagnetic phase were synthesized by the conventional hydrothermal method. X-ray diffraction spectra confirm that all the samples have a tetragonal structure. Electronic distribution over the unit cell of Sn1−x Fe x O2 showed the dependence of electronic density on the x. The crystallite size of the obtained samples was in the range of 42–72 nm. Impedance spectroscopy was employed to investigate the variation of the electrical impedance and some related parameters as frequency functions in the range of 75 k Hz–10 MHz at room temperature. The dielectric behavior was explained using the Maxwell–Wagner model of interfacial polarization. The ac conductivity results were used to evaluate the maximum barrier height, the minimum hopping distance, and the density of the localized states at the Fermi level. The effect of adding the iron ion into the tin dioxide compound was apparent, as the electrical and magnetic properties as well as the morphology were affected, although the crystal structure phase still has the same tetragonal crystal system for the different iron concentration (Fe from x = 0 up to x = 0.04) with slight variation in the lattice constants. The magnetic measurements illustrated that the Fe-doped SnO2 nanoparticles exhibit ferromagnetic ordering at room temperature. Variation of the Fe content affects the ferromagnetic characteristics of the samples.
Acknowledgments
The authors would like to express their Gratitude to the ministry of education and the deanship of scientific research at Najran University Kingdom of Saudi Arabia for their financial and technical support under code number (NU/ESCI/17/096).
-
Research ethics: Not applicable.
-
Author contributions: All authors particpated in the experimental measurements and analysis of the obtained data. All particpated in writing except A.A. Ibrahim.
-
Competing interests: The authors declare that they have no competing interests.
-
Research funding: NU/ESCI/17/096.
-
Data availability: Not applicable.
References
1. Naseem, S., Khan, W., Khan, S., Husain, S., Ahmad, A. J. Magn. Magn. Mater. 2018, 447, 155. https://doi.org/10.1016/j.jmmm.2017.09.051.Search in Google Scholar
2. Saleh, S. A., Hakeem, A. M. A., Ibrahim, E. M. M. Eur. Phys. J. Appl. Phys. 2016, 73, 30401. https://doi.org/10.1051/epjap/2016150539.Search in Google Scholar
3. Reddy, P. V., Reddy, S. V., Reddy, B. S. Mater. Today: Proc. 2016, 3, 1752. https://doi.org/10.1016/j.matpr.2016.04.070.Search in Google Scholar
4. Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J., Cho, M. H. New J. Chem. 2014, 38, 2462. https://doi.org/10.1039./C3NJ10488F.10.1039/C3NJ01488FSearch in Google Scholar
5. Kocemba, I., Rynkowski, J. M. Catal. Today 2011, 169, 192. https://doi.org/10.1016/j.cattod.2010.09.015.Search in Google Scholar
6. Zulfiqar, Yuan, Y., Yang, J., Wang, W., Ye, Z., Lu, J. Ceram. Int. 2016, 42, 17128. https://doi.org/10.1016/j.ceramint.2016.07.227.Search in Google Scholar
7. Khan, R., Zulfiqar, R. M. U., Rehman, Z. U., Fashuet, S., Fashu, S. J. Mater. Sci.: Mater. Electron. 2016, 27, 10532. https://doi.org/10.1007/s10854-016-5144-7.Search in Google Scholar
8. Selvi, E. T., Sunder, S. M. Appl. Phys. A 2017, 123, 383. https://doi.org/10.1007/s00339-017-0995-1.Search in Google Scholar
9. Punnoose, A., Hays, J., Thurber, A., Engelhard, M. H., Kukkadapu, R. K., Wang, C., Shutthanandan, V., Thevuthasan, S. Phys. Rev. B 2005, 72, 054402. https://doi.org/10.1103/PhysRevB.72.054402.Search in Google Scholar
10. Qi, J., Cao, M., Chen, Y., Hao, H., Yao, Z., Liu, H. J. Alloys Compd. 2019, 782, 51. https://doi.org/10.1016/j.jallcom.2018.12.078.Search in Google Scholar
11. Azam, A., Ahmed, A. S., Chaman, M., Naqvi, A. H. J. Appl. Phys. 2010, 108, 094329. https://doi.org/10.1063/1.3506691.Search in Google Scholar
12. Azam, A., Ahmed, A. S., Ansari, M. S., Muhamed Shafeeq, A. M., Naqvi, A. H. J. Alloys Compd. 2010, 506, 237. https://doi.org/10.1016/j.jallcom.2010.06.184.Search in Google Scholar
13. Sato, K., Katayama-Yoshida, H. Jpn. J. Appl. Phys. 2001, 40, L485. https://doi.org/10.1143/JJAP.40.L485.Search in Google Scholar
14. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D. Science 2000, 287, 1019H. https://doi.org/10.1126/science.287.5455.1019.Search in Google Scholar PubMed
15. Sharma, N., Singh, B., Patial, S., Thakur, N. J. Electr. Mater. 2019, 48, 7089. https://doi.org/10.1007/s11664-019-07520-z.Search in Google Scholar
16. Abdel Hakeem, A. M., Saleh, S. A., Ibrahim, E. M. M. Mater. Sci. Eng. B 2021, 265, 115025. https://doi.org/10.1016/j.mseb.2020.115025.Search in Google Scholar
17. Ahmed, A., Ali, T., Siddique, M. N., Ahmad, A., Tripathi, P. J. Appl. Phys. 2017, 122, 083906. https://doi.org/10.1063/1.4999830.Search in Google Scholar
18. Ahmad, N., Khan, S., Mohsin, M., Ansari, N. Ceram. Int. 2018, 44, 15972. https://doi.org/10.1016/j.ceramint.2018.06.024.Search in Google Scholar
19. Li, C., Lv, M., Zuo, J., Huang, X. Sensors 2015, 15, 3789. https://doi.org/10.3390/s150203789.Search in Google Scholar PubMed PubMed Central
20. Tischer, P., Pink, H., Treitinger, L. Jpn. J. Appl. Phys. 1980, 19, 513. https://doi.org/10.1143/JJAP.19.513.Search in Google Scholar
21. Haddad, K., Abokifa, A., Kavadiya, S., Lee, B., Banerjee, S., Raman, B., Banerjee, P., Lo, C., Fortner, J., Biswas, P. ACS Appl. Mater. Interfaces 2018, 10, 29972. https://doi.org/10.1021/acsami.8b08397.Search in Google Scholar PubMed
22. Sun, P., Zhou, X., Wang, C., Wang, B., Xu, X., Lu, G. Sens. Actuators, B 2014, 190, 32. https://doi.org/10.1016/j.snb.2013.08.045.Search in Google Scholar
23. Kappler, J., Bârsan, N., Weimar, U., Dièguez, A., Alay, J. L., Romano-Rodriguez, A., Morante, J. R., Göpel, W. Fresenius. J. Anal. Chem. 1998, 361, 110. https://doi.org/10.1007/s002160050844.Search in Google Scholar
24. Zhang, H., Wang, D., Hu, C., Kang, X., Liu, H. Sens. Actuators, B 2013, 184, 288. https://doi.org/10.1016/j.snb.2013.04.085.Search in Google Scholar
25. Xu, D., Yue, X., Zhang, Y., Song, J., Chen, X., Zhong, S., Ma, J., Ba, L., Zhang, L., Du, S. J. Alloys Compd. 2019, 773, 853. https://doi.org/10.1016/j.jallcom.2018.09.340.Search in Google Scholar
26. Sahay, P. P., Mishra, R. K., Pandey, S. N., Jha, S., Shamsuddin, M. Curr. Appl. Phys. 2013, 13, 479. https://doi.org/10.1016/j.cap.2012.09.010.Search in Google Scholar
27. Sahu, T., Behera, B. J. Mater. Sci.: Mater. Electron. 2018, 29, 7412. https://doi.org/10.1007/s10854-018-8732-x.Search in Google Scholar
28. Saleh, S. A., Ibrahim, A. A., Mohamed, S. H. Acta Phys. Pol. A 2016, 129, 1220. https://doi.org/10.12693/APhysPolA.129.1220.Search in Google Scholar
29. Rodriguez-Carvajal. Phys. B 1993, 192, 55. https://doi.org/10.1016/0921-4526(93)90108-I.Search in Google Scholar
30. Jia, C., Tao Dong, T., Li, M., Wang, P., Yang. J. Alloys Compd. 2018, 769, 521. https://doi.org/10.1016/j.jallcom.2018.08.035.Search in Google Scholar
31. Saleh, S. A., Abdel-Latif, I. A., Abdel Hakeem, A. M., Ibrahim, E. M. M. J. Nanopart. Res. 2020, 22, 44. https://doi.org/10.1007/s11051-020-4763-3.Search in Google Scholar
32. Zhao, W., Zhang, M., Ai, Z., Yang, Y., Xi, H., Shi, Q., Xu, X. J. Phys. Chem. C 2014, 118, 23117. https://doi.org/10.1021/jp506495a.Search in Google Scholar
33. Abdel-Latif, I. A., Al-Hajry, A., Umar, A., Al-Harbi, H., Bouarissa, N., Berriche, H., El-Ghazaly, M. AIP Conf. Proc. 2011, 1370, 108. https://doi.org/10.1063/1.3638090.Search in Google Scholar
34. Abdel-Latif, I. A. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 146, 012003. https://doi.org/10.1088/1757-899X/146/1/012003.Search in Google Scholar
35. Abdel-Latif, I. A., Zaki, H. M. Mater. Chem. Phys. 2022, 275, 125256. https://doi.org/10.1016/j.matchemphys.2021.125256.Search in Google Scholar
36. Soltan, W. B., Nasri, S., Lassoued, M. S., Ammaret, S. J. Mater. Sci. Mater. Electron. 2017, 28, 6649. https://doi.org/10.1007/s10854-017-6356-1.Search in Google Scholar
37. Dadami, S. T., Matteppanavar, S., ShivarajaI, R. S., Deshpande, S. K., Murugendrappa, M. V., Angadi, B. Ceram. Int. 2017, 43, 16684. https://doi.org/10.1016/j.ceramint.2017.09.059.Search in Google Scholar
38. Mohanty, S., Kumar, A., Choudhary, R. N. P. J. Mater. Sci.: Mater. Electron. 2015, 26, 9640. https://doi.org/10.1007/s10854-015-3630-y.Search in Google Scholar
39. Padmasree, K. P., Fuentes, A. F. Mater. Chem. Phys. 2019, 223, 466. https://doi.org/10.1016/j.matchemphys.2018.11.023.Search in Google Scholar
40. Bhasin, T., Agarwal, A., Sanghi, S., Kotnala, R. K., Shah, J., Yadav, M., Tuteja, M. J. Alloys Compd. 2018, 748, 1022. https://doi.org/10.1016/j.jallcom.2018.03.219.Search in Google Scholar
41. Iqbal, M. J., Ahmad, Z., Meydan, T., Melikhov, Y. J. Appl. Phys. 2012, 111, 033906. https://doi.org/10.1063/1.3676438.Search in Google Scholar
42. Abdel-Latif, I. A., Saleh, S. A. J. Alloys Compd. 2012, 530, 116. https://doi.org/10.1016/j.jallcom.2012.03.079.Search in Google Scholar
43. Abdel-Latif, I. A. J. Nanopart. Res. 2020, 22, 45. https://doi.org/10.1007/s11051-020-4759-z.Search in Google Scholar
44. Mehedi Hassan, M., Ahmed, A. S., Chaman, M., Khan, W., Naqvi, A. H., Azam, A. Mater. Res. Bull. 2012, 47, 3952. https://doi.org/10.1016/j.materresbull.2012.08.015.Search in Google Scholar
45. Sharma, H. B., Devi, K. N., Gupta, V., Lee, J. H., Singh, S. B. J. Alloy. Compd. 2014, 599, 32. https://doi.org/10.1016/j.jallcom.2014.02.024.Search in Google Scholar
46. Abdel-Latif, I. A. J. Nanopart. Res. 2020, 22, 111. https://doi.org/10.1007/s11051-020-04846-2.Search in Google Scholar
47. Shockley, W., Read, W. T. Phys. Rev. 1952, 87, 835. https://doi.org/10.1103/PhysRev.87.835.Search in Google Scholar
48. Mehraj, S., Ansari, M. S., Alimuddin. Phys. E Low Dimens. Syst. Nanostruct. 2015, 65, 84. https://doi.org/10.1016/j.physe.2014.08.016.Search in Google Scholar
49. Islam Md, R., Islam, M. S., Zubair, M. A., Usama, H. M., Azam, M. S., Sharif, A. J. Alloys Compd. 2018, 735, 2584. https://doi.org/10.1016/j.jallcom.2017.11.323.Search in Google Scholar
50. Khan, R., Fang, M. Chin. Phys. B 2015, 24, 127803. https://doi.org/10.1088/1674-1056/24/12/127803.Search in Google Scholar
51. Khan, R., Zulfiqar, R. M.-U., Rehman, Z.-U., Fashu, S. J. Mater. Sci. Mater. Electron. 2016, 27, 10532. https://doi.org/10.1007/s10854-016-5144-7.Search in Google Scholar
52. Ahmad, N., Khan, S., Ansari, M. M. N. Mater. Res. Express 2018, 5, 035045. https://doi.org/10.1088/2053-1591/aab5a3.Search in Google Scholar
53. Abdel-Latif, I. A., Ahmed, A. M., Mohamed, H. F., Saleh, S. A., Paixão, J. A., Ziq, K. A., Hamad, M., Al-Nahari, E., Ghozza, M., Allam, S. J. Magn. Magn. Mater. 2018, 457, 126. https://doi.org/10.1016/j.jmmm.2018.02.087.Search in Google Scholar
54. El-Hiti, M. A. J. Phys. D: Appl. Phys. 1996, 29, 501. https://doi.org/10.1088/0022-3727/29/3/002.Search in Google Scholar
55. Phong, P. T., Phong, L. T. H., Dang, N. V., Manh, D. H., Lee, I.-J. Ceram. Int. 2016, 42, 7414. https://doi.org/10.1016/j.ceramint.2016.01.145.Search in Google Scholar
56. Kuppan, M., Kaleemulla, S., Madhusudhana Rao, N., Krishnamoorthi, C., Omkaram, I., Sreekantha Reddy, D. J. Mater. Sci.: Mater. Electron. 2017, 28, 2976. https://doi.org/10.1007/s10854-016-5883-5.Search in Google Scholar
57. Ibrahim, E. M. M., Farghal, G., Khalaf, M. M., Hany, M., El-Lateef, A. Nano 2020, 15, 2050020. https://doi.org/10.1142/S1793292020500204.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- In Memoriam Prof. Günter Petzow
- Review
- Potential of multifunctional electrospun nanofibers in cancer management
- Original Papers
- Eco-friendly palm oil directed synthesis of mesoporous titania for photocatalytic application
- Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties
- Strontium and copper co-doped nanohydroxyapatite for bone augmentation
- Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method
- Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
- Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
- Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- In Memoriam Prof. Günter Petzow
- Review
- Potential of multifunctional electrospun nanofibers in cancer management
- Original Papers
- Eco-friendly palm oil directed synthesis of mesoporous titania for photocatalytic application
- Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties
- Strontium and copper co-doped nanohydroxyapatite for bone augmentation
- Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method
- Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
- Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
- Evolution of the second phases in the weld seams of 2.25Cr-Mo-0.25 V steel in different heat treatment states
- News
- DGM – Deutsche Gesellschaft für Materialkunde