Home Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles
Article
Licensed
Unlicensed Requires Authentication

Structure, dielectric and magnetic properties of hydrothermally synthesized Sn1−x Fe x O2 nanoparticles

  • S. A. Saleh , Ihab A. Abdel Latif ORCID logo EMAIL logo , A. A. Ibrahim , A. Al-Hajry and E. M. M. Ibrahim
Published/Copyright: February 29, 2024
Become an author with De Gruyter Brill

Abstract

Sn1−x Fe x O2 (x = 0, 1, 2, 3, and 4 %) of the diamagnetic/ferromagnetic phase were synthesized by the conventional hydrothermal method. X-ray diffraction spectra confirm that all the samples have a tetragonal structure. Electronic distribution over the unit cell of Sn1−x Fe x O2 showed the dependence of electronic density on the x. The crystallite size of the obtained samples was in the range of 42–72 nm. Impedance spectroscopy was employed to investigate the variation of the electrical impedance and some related parameters as frequency functions in the range of 75 k Hz–10 MHz at room temperature. The dielectric behavior was explained using the Maxwell–Wagner model of interfacial polarization. The ac conductivity results were used to evaluate the maximum barrier height, the minimum hopping distance, and the density of the localized states at the Fermi level. The effect of adding the iron ion into the tin dioxide compound was apparent, as the electrical and magnetic properties as well as the morphology were affected, although the crystal structure phase still has the same tetragonal crystal system for the different iron concentration (Fe from x = 0 up to x = 0.04) with slight variation in the lattice constants. The magnetic measurements illustrated that the Fe-doped SnO2 nanoparticles exhibit ferromagnetic ordering at room temperature. Variation of the Fe content affects the ferromagnetic characteristics of the samples.


Corresponding author: Ihab A. Abdel Latif, Reactor Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt, E-mail:

Acknowledgments

The authors would like to express their Gratitude to the ministry of education and the deanship of scientific research at Najran University Kingdom of Saudi Arabia for their financial and technical support under code number (NU/ESCI/17/096).

  1. Research ethics: Not applicable.

  2. Author contributions: All authors particpated in the experimental measurements and analysis of the obtained data. All particpated in writing except A.A. Ibrahim.

  3. Competing interests: The authors declare that they have no competing interests.

  4. Research funding: NU/ESCI/17/096.

  5. Data availability: Not applicable.

References

1. Naseem, S., Khan, W., Khan, S., Husain, S., Ahmad, A. J. Magn. Magn. Mater. 2018, 447, 155. https://doi.org/10.1016/j.jmmm.2017.09.051.Search in Google Scholar

2. Saleh, S. A., Hakeem, A. M. A., Ibrahim, E. M. M. Eur. Phys. J. Appl. Phys. 2016, 73, 30401. https://doi.org/10.1051/epjap/2016150539.Search in Google Scholar

3. Reddy, P. V., Reddy, S. V., Reddy, B. S. Mater. Today: Proc. 2016, 3, 1752. https://doi.org/10.1016/j.matpr.2016.04.070.Search in Google Scholar

4. Ansari, S. A., Khan, M. M., Ansari, M. O., Lee, J., Cho, M. H. New J. Chem. 2014, 38, 2462. https://doi.org/10.1039./C3NJ10488F.10.1039/C3NJ01488FSearch in Google Scholar

5. Kocemba, I., Rynkowski, J. M. Catal. Today 2011, 169, 192. https://doi.org/10.1016/j.cattod.2010.09.015.Search in Google Scholar

6. Zulfiqar, Yuan, Y., Yang, J., Wang, W., Ye, Z., Lu, J. Ceram. Int. 2016, 42, 17128. https://doi.org/10.1016/j.ceramint.2016.07.227.Search in Google Scholar

7. Khan, R., Zulfiqar, R. M. U., Rehman, Z. U., Fashuet, S., Fashu, S. J. Mater. Sci.: Mater. Electron. 2016, 27, 10532. https://doi.org/10.1007/s10854-016-5144-7.Search in Google Scholar

8. Selvi, E. T., Sunder, S. M. Appl. Phys. A 2017, 123, 383. https://doi.org/10.1007/s00339-017-0995-1.Search in Google Scholar

9. Punnoose, A., Hays, J., Thurber, A., Engelhard, M. H., Kukkadapu, R. K., Wang, C., Shutthanandan, V., Thevuthasan, S. Phys. Rev. B 2005, 72, 054402. https://doi.org/10.1103/PhysRevB.72.054402.Search in Google Scholar

10. Qi, J., Cao, M., Chen, Y., Hao, H., Yao, Z., Liu, H. J. Alloys Compd. 2019, 782, 51. https://doi.org/10.1016/j.jallcom.2018.12.078.Search in Google Scholar

11. Azam, A., Ahmed, A. S., Chaman, M., Naqvi, A. H. J. Appl. Phys. 2010, 108, 094329. https://doi.org/10.1063/1.3506691.Search in Google Scholar

12. Azam, A., Ahmed, A. S., Ansari, M. S., Muhamed Shafeeq, A. M., Naqvi, A. H. J. Alloys Compd. 2010, 506, 237. https://doi.org/10.1016/j.jallcom.2010.06.184.Search in Google Scholar

13. Sato, K., Katayama-Yoshida, H. Jpn. J. Appl. Phys. 2001, 40, L485. https://doi.org/10.1143/JJAP.40.L485.Search in Google Scholar

14. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D. Science 2000, 287, 1019H. https://doi.org/10.1126/science.287.5455.1019.Search in Google Scholar PubMed

15. Sharma, N., Singh, B., Patial, S., Thakur, N. J. Electr. Mater. 2019, 48, 7089. https://doi.org/10.1007/s11664-019-07520-z.Search in Google Scholar

16. Abdel Hakeem, A. M., Saleh, S. A., Ibrahim, E. M. M. Mater. Sci. Eng. B 2021, 265, 115025. https://doi.org/10.1016/j.mseb.2020.115025.Search in Google Scholar

17. Ahmed, A., Ali, T., Siddique, M. N., Ahmad, A., Tripathi, P. J. Appl. Phys. 2017, 122, 083906. https://doi.org/10.1063/1.4999830.Search in Google Scholar

18. Ahmad, N., Khan, S., Mohsin, M., Ansari, N. Ceram. Int. 2018, 44, 15972. https://doi.org/10.1016/j.ceramint.2018.06.024.Search in Google Scholar

19. Li, C., Lv, M., Zuo, J., Huang, X. Sensors 2015, 15, 3789. https://doi.org/10.3390/s150203789.Search in Google Scholar PubMed PubMed Central

20. Tischer, P., Pink, H., Treitinger, L. Jpn. J. Appl. Phys. 1980, 19, 513. https://doi.org/10.1143/JJAP.19.513.Search in Google Scholar

21. Haddad, K., Abokifa, A., Kavadiya, S., Lee, B., Banerjee, S., Raman, B., Banerjee, P., Lo, C., Fortner, J., Biswas, P. ACS Appl. Mater. Interfaces 2018, 10, 29972. https://doi.org/10.1021/acsami.8b08397.Search in Google Scholar PubMed

22. Sun, P., Zhou, X., Wang, C., Wang, B., Xu, X., Lu, G. Sens. Actuators, B 2014, 190, 32. https://doi.org/10.1016/j.snb.2013.08.045.Search in Google Scholar

23. Kappler, J., Bârsan, N., Weimar, U., Dièguez, A., Alay, J. L., Romano-Rodriguez, A., Morante, J. R., Göpel, W. Fresenius. J. Anal. Chem. 1998, 361, 110. https://doi.org/10.1007/s002160050844.Search in Google Scholar

24. Zhang, H., Wang, D., Hu, C., Kang, X., Liu, H. Sens. Actuators, B 2013, 184, 288. https://doi.org/10.1016/j.snb.2013.04.085.Search in Google Scholar

25. Xu, D., Yue, X., Zhang, Y., Song, J., Chen, X., Zhong, S., Ma, J., Ba, L., Zhang, L., Du, S. J. Alloys Compd. 2019, 773, 853. https://doi.org/10.1016/j.jallcom.2018.09.340.Search in Google Scholar

26. Sahay, P. P., Mishra, R. K., Pandey, S. N., Jha, S., Shamsuddin, M. Curr. Appl. Phys. 2013, 13, 479. https://doi.org/10.1016/j.cap.2012.09.010.Search in Google Scholar

27. Sahu, T., Behera, B. J. Mater. Sci.: Mater. Electron. 2018, 29, 7412. https://doi.org/10.1007/s10854-018-8732-x.Search in Google Scholar

28. Saleh, S. A., Ibrahim, A. A., Mohamed, S. H. Acta Phys. Pol. A 2016, 129, 1220. https://doi.org/10.12693/APhysPolA.129.1220.Search in Google Scholar

29. Rodriguez-Carvajal. Phys. B 1993, 192, 55. https://doi.org/10.1016/0921-4526(93)90108-I.Search in Google Scholar

30. Jia, C., Tao Dong, T., Li, M., Wang, P., Yang. J. Alloys Compd. 2018, 769, 521. https://doi.org/10.1016/j.jallcom.2018.08.035.Search in Google Scholar

31. Saleh, S. A., Abdel-Latif, I. A., Abdel Hakeem, A. M., Ibrahim, E. M. M. J. Nanopart. Res. 2020, 22, 44. https://doi.org/10.1007/s11051-020-4763-3.Search in Google Scholar

32. Zhao, W., Zhang, M., Ai, Z., Yang, Y., Xi, H., Shi, Q., Xu, X. J. Phys. Chem. C 2014, 118, 23117. https://doi.org/10.1021/jp506495a.Search in Google Scholar

33. Abdel-Latif, I. A., Al-Hajry, A., Umar, A., Al-Harbi, H., Bouarissa, N., Berriche, H., El-Ghazaly, M. AIP Conf. Proc. 2011, 1370, 108. https://doi.org/10.1063/1.3638090.Search in Google Scholar

34. Abdel-Latif, I. A. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 146, 012003. https://doi.org/10.1088/1757-899X/146/1/012003.Search in Google Scholar

35. Abdel-Latif, I. A., Zaki, H. M. Mater. Chem. Phys. 2022, 275, 125256. https://doi.org/10.1016/j.matchemphys.2021.125256.Search in Google Scholar

36. Soltan, W. B., Nasri, S., Lassoued, M. S., Ammaret, S. J. Mater. Sci. Mater. Electron. 2017, 28, 6649. https://doi.org/10.1007/s10854-017-6356-1.Search in Google Scholar

37. Dadami, S. T., Matteppanavar, S., ShivarajaI, R. S., Deshpande, S. K., Murugendrappa, M. V., Angadi, B. Ceram. Int. 2017, 43, 16684. https://doi.org/10.1016/j.ceramint.2017.09.059.Search in Google Scholar

38. Mohanty, S., Kumar, A., Choudhary, R. N. P. J. Mater. Sci.: Mater. Electron. 2015, 26, 9640. https://doi.org/10.1007/s10854-015-3630-y.Search in Google Scholar

39. Padmasree, K. P., Fuentes, A. F. Mater. Chem. Phys. 2019, 223, 466. https://doi.org/10.1016/j.matchemphys.2018.11.023.Search in Google Scholar

40. Bhasin, T., Agarwal, A., Sanghi, S., Kotnala, R. K., Shah, J., Yadav, M., Tuteja, M. J. Alloys Compd. 2018, 748, 1022. https://doi.org/10.1016/j.jallcom.2018.03.219.Search in Google Scholar

41. Iqbal, M. J., Ahmad, Z., Meydan, T., Melikhov, Y. J. Appl. Phys. 2012, 111, 033906. https://doi.org/10.1063/1.3676438.Search in Google Scholar

42. Abdel-Latif, I. A., Saleh, S. A. J. Alloys Compd. 2012, 530, 116. https://doi.org/10.1016/j.jallcom.2012.03.079.Search in Google Scholar

43. Abdel-Latif, I. A. J. Nanopart. Res. 2020, 22, 45. https://doi.org/10.1007/s11051-020-4759-z.Search in Google Scholar

44. Mehedi Hassan, M., Ahmed, A. S., Chaman, M., Khan, W., Naqvi, A. H., Azam, A. Mater. Res. Bull. 2012, 47, 3952. https://doi.org/10.1016/j.materresbull.2012.08.015.Search in Google Scholar

45. Sharma, H. B., Devi, K. N., Gupta, V., Lee, J. H., Singh, S. B. J. Alloy. Compd. 2014, 599, 32. https://doi.org/10.1016/j.jallcom.2014.02.024.Search in Google Scholar

46. Abdel-Latif, I. A. J. Nanopart. Res. 2020, 22, 111. https://doi.org/10.1007/s11051-020-04846-2.Search in Google Scholar

47. Shockley, W., Read, W. T. Phys. Rev. 1952, 87, 835. https://doi.org/10.1103/PhysRev.87.835.Search in Google Scholar

48. Mehraj, S., Ansari, M. S., Alimuddin. Phys. E Low Dimens. Syst. Nanostruct. 2015, 65, 84. https://doi.org/10.1016/j.physe.2014.08.016.Search in Google Scholar

49. Islam Md, R., Islam, M. S., Zubair, M. A., Usama, H. M., Azam, M. S., Sharif, A. J. Alloys Compd. 2018, 735, 2584. https://doi.org/10.1016/j.jallcom.2017.11.323.Search in Google Scholar

50. Khan, R., Fang, M. Chin. Phys. B 2015, 24, 127803. https://doi.org/10.1088/1674-1056/24/12/127803.Search in Google Scholar

51. Khan, R., Zulfiqar, R. M.-U., Rehman, Z.-U., Fashu, S. J. Mater. Sci. Mater. Electron. 2016, 27, 10532. https://doi.org/10.1007/s10854-016-5144-7.Search in Google Scholar

52. Ahmad, N., Khan, S., Ansari, M. M. N. Mater. Res. Express 2018, 5, 035045. https://doi.org/10.1088/2053-1591/aab5a3.Search in Google Scholar

53. Abdel-Latif, I. A., Ahmed, A. M., Mohamed, H. F., Saleh, S. A., Paixão, J. A., Ziq, K. A., Hamad, M., Al-Nahari, E., Ghozza, M., Allam, S. J. Magn. Magn. Mater. 2018, 457, 126. https://doi.org/10.1016/j.jmmm.2018.02.087.Search in Google Scholar

54. El-Hiti, M. A. J. Phys. D: Appl. Phys. 1996, 29, 501. https://doi.org/10.1088/0022-3727/29/3/002.Search in Google Scholar

55. Phong, P. T., Phong, L. T. H., Dang, N. V., Manh, D. H., Lee, I.-J. Ceram. Int. 2016, 42, 7414. https://doi.org/10.1016/j.ceramint.2016.01.145.Search in Google Scholar

56. Kuppan, M., Kaleemulla, S., Madhusudhana Rao, N., Krishnamoorthi, C., Omkaram, I., Sreekantha Reddy, D. J. Mater. Sci.: Mater. Electron. 2017, 28, 2976. https://doi.org/10.1007/s10854-016-5883-5.Search in Google Scholar

57. Ibrahim, E. M. M., Farghal, G., Khalaf, M. M., Hany, M., El-Lateef, A. Nano 2020, 15, 2050020. https://doi.org/10.1142/S1793292020500204.Search in Google Scholar

Received: 2022-11-10
Accepted: 2023-05-25
Published Online: 2024-02-29
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0458/html
Scroll to top button