Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
Abstract
In this paper, a low elastic modulus, non-cytotoxic Ti-10Ta-2Nb-2Zr titanium alloy was prepared by selective laser melting additive manufacturing. The effect of annealing and solution heat treatment on the structure, mechanical properties, and tribological behavior were investigated. The results show that the microstructure was composed of the main α′ phase and a small amount of β phase. Heat treatment improved strength and elongation. The ultimate tensile strength (UTS) and elongation of the deposited specimen were 807 ± 8.74 MPa and 6.6 ± 0.75 %, respectively. After annealing, the UTS was nearly the same, but the elongation increased to 15.3 ± 0.95 %. After solution and aging, the UTS and elongation increased to 873 ∼ 813 MPa and 9.25–11.9 %, respectively. The elastic modulus of the deposited specimen was 120 ± 6.81 GPa. The elastic moduli of heat treated specimens ranged from 74 ± 4.04 to 96 ± 5.13 GPa. The elastic moduli of heat treated specimens were close to that of β-type titanium alloys. The wear mechanism was mainly abrasive wear and oxidative wear. Compared with the deposited and annealed specimens, the solution and age treated specimens had low friction coefficients and much better wear resistance. In terms of properties and cost, the designed alloy has great potential in the medical implant field.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no competing interests.
-
Research funding: Funding agency: The Natural Science Foundation of Changsha, China grant number: kq2202306.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Niinomi, M., Akahori, T., Katsura, S., Yamauchi, K., Ogawa, M. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2007, 27, 154–161. https://doi.org/10.1016/j.msec.2006.04.008.Suche in Google Scholar
2. Ottria, L., Lauritano, D., Bassi, M. A., Palmieri, A., Candotto, V., Tagliabue, A., Tettamanti, L. J. Biol. Regul. Homeost. Agents 2018, 32, 81–90.Suche in Google Scholar
3. Long, M., Rack, H. J. Biomaterials 1998, 19, 1621–1639. https://doi.org/10.1016/s0142-9612(97)00146-4.Suche in Google Scholar PubMed
4. Zhao, X. L., Niinomi, M., Nakai, M., Miyamoto, G., Furuhara, T. Acta Biomater. 2011, 7, 3230–3236. https://doi.org/10.1016/j.actbio.2011.04.019.Suche in Google Scholar PubMed
5. Sing, S. L., Yeong, W. Y., Wiria, F. E. J. Alloys Compd. 2016, 660, 461–470. https://doi.org/10.1016/j.jallcom.2015.11.141.Suche in Google Scholar
6. Hallab, N. J., Vermes, C., Messina, C., Roebuck, K. A., Glant, T. T., Jacobs, J. J. J. Biomed. Mater. Res. 2002, 60, 420–433. https://doi.org/10.1002/jbm.10106.Suche in Google Scholar PubMed
7. Miura, K., Yamada, N., Hanada, S., Jung, T. K., Itoi, E. Acta Biomater. 2011, 7, 2320–2326. https://doi.org/10.1016/j.actbio.2011.02.008.Suche in Google Scholar PubMed
8. Chapala, P., Kumar, P. S., Joardar, J., Bhandari, V., Acharyya, S. G. Appl. Surf. Sci. 2019, 469, 617–623. http://doi.org/10.1016/j.apsusc.2018.09.149.10.1016/j.apsusc.2018.09.149Suche in Google Scholar
9. Song, Y., Xu, D. S., Yang, R., Li, D., Wu, W. T., Guo, Z. X. Mater. Sci. Eng., A 1999, 260, 269–274. https://doi.org/10.1016/s0921-5093(98)00886-7.Suche in Google Scholar
10. Zhou, Y., Li, Y. X., Yang, X. J., Cui, Z. D., Zhu, S. L. J. Alloys Compd. 2009, 486, 628–632. https://doi.org/10.1016/j.jallcom.2009.07.006.Suche in Google Scholar
11. Elias, L. M., Schneider, S. G., Schneider, S., Silva, H. M., Malvisi, E. Mater. Sci. Eng., A 2006, 432, 108–112. https://doi.org/10.1016/j.msea.2006.06.013.Suche in Google Scholar
12. Niinomi, M. Biomaterials 2003, 24, 2673–2683. https://doi.org/10.1016/s0142-9612(03)00069-3.Suche in Google Scholar PubMed
13. Bertrand, E., Gloriant, T., Gordin, D. M., Vasilescu, E., Drob, P., Vasilescu, C., Drob, S. I. J. Mech. Behav. Biomed. Mater. 2010, 3, 559–564. https://doi.org/10.1016/j.jmbbm.2010.06.007.Suche in Google Scholar PubMed
14. Guo, Y. Y., Chen, D. S., Lu, W. J., Jia, Y. H., Wang, L. Q., Zhang, X. L. Biomed. Mater. 2013, 8, 055004. https://doi.org/10.1088/1748-6041/8/5/055004.Suche in Google Scholar PubMed
15. Ataee, A., Li, Y., Fraser, D., Song, G., Wen, C. Mater. Des. 2018, 137, 345–354. https://doi.org/10.1016/j.matdes.2017.10.040.Suche in Google Scholar
16. Li, Y. C., Ding, Y. F. F., Munir, K., Lin, J. X., Brandt, M., Atrens, A., Xiao, Y., Kanwar, J. R., Wen, C. E. Acta Biomater. 2019, 87, 273–284. https://doi.org/10.1016/j.actbio.2019.01.051.Suche in Google Scholar PubMed
17. Kim, Y.-wook. Intermetallics 2015, 62, 56–59. https://doi.org/10.1016/j.intermet.2015.03.011.Suche in Google Scholar
18. Li, B. Q., Xie, R. Z., Lu, X. Bioact. Mater. 2020, 5, 564–568. https://doi.org/10.1016/j.bioactmat.2020.04.014.Suche in Google Scholar PubMed PubMed Central
19. Arjunan, A., Demetriou, M., Baroutaji, A., Wang, C. J. Mech. Behav. Biomed. Mater. 2020, 102, 103517. https://doi.org/10.1016/j.jmbbm.2019.103517.Suche in Google Scholar PubMed
20. Gu, D. D., Shi, X. Y., Poprawe, R., Bourell, D. L., Setchi, R., Zhu, J. H. Science 2021, 372, 932–946. https://doi.org/10.1126/science.abg1487.Suche in Google Scholar PubMed
21. Yang, M., Sun, S.-H., Wang, B., Liang, Y., Wang, L., Xue, Y. J. Phys.: Conf. Ser. 2021, 1948, 012194. https://doi.org/10.1088/1742-6596/1948/1/012194.Suche in Google Scholar
22. Cordero, Z. C., Dinwiddie, R. B., Immel, D., Dehoff, R. R. J. Mater. Sci. 2017, 52, 3429–3435. https://doi.org/10.1007/s10853-016-0631-z.Suche in Google Scholar
23. Luo, J. P., Huang, Y. J., Xu, J. Y., Sun, J. F., Dargusch, M. S., Hou, C. H., Ren, L., Wang, R. Z., Ebel, T., Yan, M. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 114, 110903. https://doi.org/10.1016/j.msec.2020.110903.Suche in Google Scholar PubMed
24. Pal, S., Gubeljak, N., Hudak, R., Lojen, G., Rajtukova, V., Brajlih, T., Drstvensek, I. Results Phys. 2020, 17, 103186. https://doi.org/10.1016/j.rinp.2020.103186.Suche in Google Scholar
25. Kumar, P., Mahobia, G. S., Singh, V., Chattopadhyay, K. Mater. Sci. Technol. 2020, 36, 717–725. https://doi.org/10.1080/02670836.2020.1732608.Suche in Google Scholar
26. Fan, Z. C., Feng, H. W. Results Phys. 2018, 10, 660–664. https://doi.org/10.1016/j.rinp.2018.07.008.Suche in Google Scholar
27. Zhang, Y. F., Feng, L. M., Zhang, T., Xu, H. Y., Li, J. Z. J. Alloys Compd. 2021, 888, 161602. https://doi.org/10.1016/j.jallcom.2021.161602.Suche in Google Scholar
28. Ahn, B. Materials 2021, 14, 5524. https://doi.org/10.3390/ma14195524.Suche in Google Scholar PubMed PubMed Central
29. Raducanu, D., Vasilescu, E., Cojocaru, V. D., Cinca, I., Drob, P., Vasilescu, C., Drob, S. I. J. Mech. Behav. Biomed. Mater. 2011, 4, 1421–1430. https://doi.org/10.1016/j.jmbbm.2011.05.012.Suche in Google Scholar PubMed
30. Liu, W., Chen, C. Y., Shuai, S. S., Zhao, R. X., Liu, L. T., Wang, X. D., Hu, T., Xuan, W. D., Li, C. J., Yu, J. B., Wang, J., Ren, Z. M. Mater. Sci. Eng., A 2020, 797, 139981. https://doi.org/10.1016/j.msea.2020.139981.Suche in Google Scholar
31. Hao, Y. L., Niinomi, M., Kuroda, D., Fukunaga, K., Zhou, Y. L., Yang, R., Suzuki, A. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2003, 34A, 1007–1012. https://doi.org/10.1007/s11661-003-0230-x.Suche in Google Scholar
32. Simonelli, M., Tse, Y. Y., Tuck, C. Mater. Sci. Eng., A 2014, 616, 1–11. https://doi.org/10.1016/j.msea.2014.07.086.Suche in Google Scholar
33. Jeong, W. K., Shin, S. E., Son, H., Choi, H. Mater. Charact. 2021, 179, 111361. https://doi.org/10.1016/j.matchar.2021.111361.Suche in Google Scholar
34. Elias, C. N., Fernandes, D. J., Resende, C. R. S., Roestel, J. Dent. Mater. 2015, 31, E1–E13. https://doi.org/10.1016/j.dental.2014.10.002.Suche in Google Scholar PubMed
35. Kaur, M., Singh, K. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 102, 844–862. https://doi.org/10.1016/j.msec.2019.04.064.Suche in Google Scholar PubMed
36. Luo, J. P., Sun, J. F., Huang, Y. J., Zhang, J. H., Zhang, Y. D., Zhao, D. P., Yan, M. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 97, 275–284. https://doi.org/10.1016/j.msec.2018.11.077.Suche in Google Scholar PubMed
37. Peng, Y.-Po, Ju, C.-P., Lin, J.-H. C. Mater. Trans. 2018, 59, 734–740. https://doi.org/10.2320/matertrans.M2017371.Suche in Google Scholar
38. Ju, J., Zhao, C. L., Kang, M. D., Li, J. J., He, L., Wang, C. C., Li, J. L., Fu, H. G., Wang, J. Tribol. Int. 2021, 159, 106996. https://doi.org/10.1016/j.triboint.2021.106996.Suche in Google Scholar
39. Li, X. X., Zhou, Y., Ji, X. L., Li, Y. X., Wang, S. Q. Tribol. Int. 2015, 91, 228–234. https://doi.org/10.1016/j.triboint.2015.02.009.Suche in Google Scholar
40. Li, S. J., Yang, R., Li, S., Hao, Y. L., Cui, Y. Y., Niinomi, M., Guo, Z. X. Wear 2004, 257, 869–876. https://doi.org/10.1016/j.wear.2004.04.001.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Preparation and characterization of stannous phosphate glass – polytetrafluoroethylene composites
- A novel investigation of co-processing porous geopolymer using glass fibres recycled from waste turbine blades
- Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
- Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
- Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Preparation and characterization of stannous phosphate glass – polytetrafluoroethylene composites
- A novel investigation of co-processing porous geopolymer using glass fibres recycled from waste turbine blades
- Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
- Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
- Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
- News
- DGM – Deutsche Gesellschaft für Materialkunde