Startseite Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting

  • Kai Zhang , Ning Zhong , Xianjin Zhang , Chen Wen , Yun Zhou und Shangwen Lu EMAIL logo
Veröffentlicht/Copyright: 4. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a low elastic modulus, non-cytotoxic Ti-10Ta-2Nb-2Zr titanium alloy was prepared by selective laser melting additive manufacturing. The effect of annealing and solution heat treatment on the structure, mechanical properties, and tribological behavior were investigated. The results show that the microstructure was composed of the main α′ phase and a small amount of β phase. Heat treatment improved strength and elongation. The ultimate tensile strength (UTS) and elongation of the deposited specimen were 807 ± 8.74 MPa and 6.6 ± 0.75 %, respectively. After annealing, the UTS was nearly the same, but the elongation increased to 15.3 ± 0.95 %. After solution and aging, the UTS and elongation increased to 873 ∼ 813 MPa and 9.25–11.9 %, respectively. The elastic modulus of the deposited specimen was 120 ± 6.81 GPa. The elastic moduli of heat treated specimens ranged from 74 ± 4.04 to 96 ± 5.13 GPa. The elastic moduli of heat treated specimens were close to that of β-type titanium alloys. The wear mechanism was mainly abrasive wear and oxidative wear. Compared with the deposited and annealed specimens, the solution and age treated specimens had low friction coefficients and much better wear resistance. In terms of properties and cost, the designed alloy has great potential in the medical implant field.


Corresponding author: Shangwen Lu, Department of Automotive Engineering, Hunan Industry Polytechnic, Hanpu Science and Education Park, Yuelu District, 410036, Changsha, P.R. China; and Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors states no competing interests.

  4. Research funding: Funding agency: The Natural Science Foundation of Changsha, China grant number: kq2202306.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Niinomi, M., Akahori, T., Katsura, S., Yamauchi, K., Ogawa, M. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2007, 27, 154–161. https://doi.org/10.1016/j.msec.2006.04.008.Suche in Google Scholar

2. Ottria, L., Lauritano, D., Bassi, M. A., Palmieri, A., Candotto, V., Tagliabue, A., Tettamanti, L. J. Biol. Regul. Homeost. Agents 2018, 32, 81–90.Suche in Google Scholar

3. Long, M., Rack, H. J. Biomaterials 1998, 19, 1621–1639. https://doi.org/10.1016/s0142-9612(97)00146-4.Suche in Google Scholar PubMed

4. Zhao, X. L., Niinomi, M., Nakai, M., Miyamoto, G., Furuhara, T. Acta Biomater. 2011, 7, 3230–3236. https://doi.org/10.1016/j.actbio.2011.04.019.Suche in Google Scholar PubMed

5. Sing, S. L., Yeong, W. Y., Wiria, F. E. J. Alloys Compd. 2016, 660, 461–470. https://doi.org/10.1016/j.jallcom.2015.11.141.Suche in Google Scholar

6. Hallab, N. J., Vermes, C., Messina, C., Roebuck, K. A., Glant, T. T., Jacobs, J. J. J. Biomed. Mater. Res. 2002, 60, 420–433. https://doi.org/10.1002/jbm.10106.Suche in Google Scholar PubMed

7. Miura, K., Yamada, N., Hanada, S., Jung, T. K., Itoi, E. Acta Biomater. 2011, 7, 2320–2326. https://doi.org/10.1016/j.actbio.2011.02.008.Suche in Google Scholar PubMed

8. Chapala, P., Kumar, P. S., Joardar, J., Bhandari, V., Acharyya, S. G. Appl. Surf. Sci. 2019, 469, 617–623. http://doi.org/10.1016/j.apsusc.2018.09.149.10.1016/j.apsusc.2018.09.149Suche in Google Scholar

9. Song, Y., Xu, D. S., Yang, R., Li, D., Wu, W. T., Guo, Z. X. Mater. Sci. Eng., A 1999, 260, 269–274. https://doi.org/10.1016/s0921-5093(98)00886-7.Suche in Google Scholar

10. Zhou, Y., Li, Y. X., Yang, X. J., Cui, Z. D., Zhu, S. L. J. Alloys Compd. 2009, 486, 628–632. https://doi.org/10.1016/j.jallcom.2009.07.006.Suche in Google Scholar

11. Elias, L. M., Schneider, S. G., Schneider, S., Silva, H. M., Malvisi, E. Mater. Sci. Eng., A 2006, 432, 108–112. https://doi.org/10.1016/j.msea.2006.06.013.Suche in Google Scholar

12. Niinomi, M. Biomaterials 2003, 24, 2673–2683. https://doi.org/10.1016/s0142-9612(03)00069-3.Suche in Google Scholar PubMed

13. Bertrand, E., Gloriant, T., Gordin, D. M., Vasilescu, E., Drob, P., Vasilescu, C., Drob, S. I. J. Mech. Behav. Biomed. Mater. 2010, 3, 559–564. https://doi.org/10.1016/j.jmbbm.2010.06.007.Suche in Google Scholar PubMed

14. Guo, Y. Y., Chen, D. S., Lu, W. J., Jia, Y. H., Wang, L. Q., Zhang, X. L. Biomed. Mater. 2013, 8, 055004. https://doi.org/10.1088/1748-6041/8/5/055004.Suche in Google Scholar PubMed

15. Ataee, A., Li, Y., Fraser, D., Song, G., Wen, C. Mater. Des. 2018, 137, 345–354. https://doi.org/10.1016/j.matdes.2017.10.040.Suche in Google Scholar

16. Li, Y. C., Ding, Y. F. F., Munir, K., Lin, J. X., Brandt, M., Atrens, A., Xiao, Y., Kanwar, J. R., Wen, C. E. Acta Biomater. 2019, 87, 273–284. https://doi.org/10.1016/j.actbio.2019.01.051.Suche in Google Scholar PubMed

17. Kim, Y.-wook. Intermetallics 2015, 62, 56–59. https://doi.org/10.1016/j.intermet.2015.03.011.Suche in Google Scholar

18. Li, B. Q., Xie, R. Z., Lu, X. Bioact. Mater. 2020, 5, 564–568. https://doi.org/10.1016/j.bioactmat.2020.04.014.Suche in Google Scholar PubMed PubMed Central

19. Arjunan, A., Demetriou, M., Baroutaji, A., Wang, C. J. Mech. Behav. Biomed. Mater. 2020, 102, 103517. https://doi.org/10.1016/j.jmbbm.2019.103517.Suche in Google Scholar PubMed

20. Gu, D. D., Shi, X. Y., Poprawe, R., Bourell, D. L., Setchi, R., Zhu, J. H. Science 2021, 372, 932–946. https://doi.org/10.1126/science.abg1487.Suche in Google Scholar PubMed

21. Yang, M., Sun, S.-H., Wang, B., Liang, Y., Wang, L., Xue, Y. J. Phys.: Conf. Ser. 2021, 1948, 012194. https://doi.org/10.1088/1742-6596/1948/1/012194.Suche in Google Scholar

22. Cordero, Z. C., Dinwiddie, R. B., Immel, D., Dehoff, R. R. J. Mater. Sci. 2017, 52, 3429–3435. https://doi.org/10.1007/s10853-016-0631-z.Suche in Google Scholar

23. Luo, J. P., Huang, Y. J., Xu, J. Y., Sun, J. F., Dargusch, M. S., Hou, C. H., Ren, L., Wang, R. Z., Ebel, T., Yan, M. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 114, 110903. https://doi.org/10.1016/j.msec.2020.110903.Suche in Google Scholar PubMed

24. Pal, S., Gubeljak, N., Hudak, R., Lojen, G., Rajtukova, V., Brajlih, T., Drstvensek, I. Results Phys. 2020, 17, 103186. https://doi.org/10.1016/j.rinp.2020.103186.Suche in Google Scholar

25. Kumar, P., Mahobia, G. S., Singh, V., Chattopadhyay, K. Mater. Sci. Technol. 2020, 36, 717–725. https://doi.org/10.1080/02670836.2020.1732608.Suche in Google Scholar

26. Fan, Z. C., Feng, H. W. Results Phys. 2018, 10, 660–664. https://doi.org/10.1016/j.rinp.2018.07.008.Suche in Google Scholar

27. Zhang, Y. F., Feng, L. M., Zhang, T., Xu, H. Y., Li, J. Z. J. Alloys Compd. 2021, 888, 161602. https://doi.org/10.1016/j.jallcom.2021.161602.Suche in Google Scholar

28. Ahn, B. Materials 2021, 14, 5524. https://doi.org/10.3390/ma14195524.Suche in Google Scholar PubMed PubMed Central

29. Raducanu, D., Vasilescu, E., Cojocaru, V. D., Cinca, I., Drob, P., Vasilescu, C., Drob, S. I. J. Mech. Behav. Biomed. Mater. 2011, 4, 1421–1430. https://doi.org/10.1016/j.jmbbm.2011.05.012.Suche in Google Scholar PubMed

30. Liu, W., Chen, C. Y., Shuai, S. S., Zhao, R. X., Liu, L. T., Wang, X. D., Hu, T., Xuan, W. D., Li, C. J., Yu, J. B., Wang, J., Ren, Z. M. Mater. Sci. Eng., A 2020, 797, 139981. https://doi.org/10.1016/j.msea.2020.139981.Suche in Google Scholar

31. Hao, Y. L., Niinomi, M., Kuroda, D., Fukunaga, K., Zhou, Y. L., Yang, R., Suzuki, A. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2003, 34A, 1007–1012. https://doi.org/10.1007/s11661-003-0230-x.Suche in Google Scholar

32. Simonelli, M., Tse, Y. Y., Tuck, C. Mater. Sci. Eng., A 2014, 616, 1–11. https://doi.org/10.1016/j.msea.2014.07.086.Suche in Google Scholar

33. Jeong, W. K., Shin, S. E., Son, H., Choi, H. Mater. Charact. 2021, 179, 111361. https://doi.org/10.1016/j.matchar.2021.111361.Suche in Google Scholar

34. Elias, C. N., Fernandes, D. J., Resende, C. R. S., Roestel, J. Dent. Mater. 2015, 31, E1–E13. https://doi.org/10.1016/j.dental.2014.10.002.Suche in Google Scholar PubMed

35. Kaur, M., Singh, K. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 102, 844–862. https://doi.org/10.1016/j.msec.2019.04.064.Suche in Google Scholar PubMed

36. Luo, J. P., Sun, J. F., Huang, Y. J., Zhang, J. H., Zhang, Y. D., Zhao, D. P., Yan, M. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 97, 275–284. https://doi.org/10.1016/j.msec.2018.11.077.Suche in Google Scholar PubMed

37. Peng, Y.-Po, Ju, C.-P., Lin, J.-H. C. Mater. Trans. 2018, 59, 734–740. https://doi.org/10.2320/matertrans.M2017371.Suche in Google Scholar

38. Ju, J., Zhao, C. L., Kang, M. D., Li, J. J., He, L., Wang, C. C., Li, J. L., Fu, H. G., Wang, J. Tribol. Int. 2021, 159, 106996. https://doi.org/10.1016/j.triboint.2021.106996.Suche in Google Scholar

39. Li, X. X., Zhou, Y., Ji, X. L., Li, Y. X., Wang, S. Q. Tribol. Int. 2015, 91, 228–234. https://doi.org/10.1016/j.triboint.2015.02.009.Suche in Google Scholar

40. Li, S. J., Yang, R., Li, S., Hao, Y. L., Cui, Y. Y., Niinomi, M., Guo, Z. X. Wear 2004, 257, 869–876. https://doi.org/10.1016/j.wear.2004.04.001.Suche in Google Scholar

Received: 2022-11-16
Accepted: 2023-08-28
Published Online: 2024-04-04
Published in Print: 2024-05-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0467/html
Button zum nach oben scrollen