Abstract
This paper describes the synthesis of Ag2ZrO3 nanocrystals using coprecipitation and microwave-assisted hydrothermal methods. These nanocrystals were characterized by means of X-ray diffraction, micro-Raman spectroscopy, Fourier transform infrared absorption spectroscopy, field emission scanning electron microscopy, and UV–Visible spectroscopy, and their photocatalytic performance for methylene blue degradation under visible-light irradiation has been tested. The X-ray diffraction, micro-Raman spectroscopy, Fourier transform infrared absorption spectroscopy analyses indicate that the Ag2ZrO3 nanocrystals have good crystallinity and no secondary phases. The UV–Visible spectroscopy results showed a variation in the optical band gap values (2.71–2.97 eV) with increasing temperature, which indicates the possible presence of defects in the crystal lattice at a medium range. Field emission scanning electron microscopy images revealed that the nanocrystals have uneven spherical shapes and average particle size around 50–70 nm. The good photocatalytic efficiency can be attributed to defects in the silver zirconate structure capable of forming the active adsorption sites. Finally, we discuss a photocatalytic mechanism to understand the photocatalytic process in cationic dye (methylene blue) degradation in aqueous solution.
Acknowledgments
Thanks to the Instituto Nacional de Pesquisas Espaciais (INPE) and the Federal University of São Paulo for supporting us with all the necessary facilities during the research.
-
Research ethics: None declared.
-
Author contributions: Conceptualization, M. T. Fabbro and L. P. S. Santos; methodology, M. T. Fabbro and F. M. Yamamoto; validation, L. P. S. Santos, J. T. Matsushima and M. R. Baldan; experimental investigation, M. T. Fabbro; data curation, M. T. Fabbro, F. M. Yamamoto and L. P. S. Santos; writing – original draft preparation, M. T. Fabbro; writing – review and editing, M. T. Fabbro, L. P. S. Santos and M. R. Baldan; funding acquisition, M. R. Baldan and L. P. S. Santos. All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The authors are thankful for the financial support of the following Brazilian research funding institutions: the Financiadora de Estudos e Projetos (FINEP/N° 01.16.0076-00) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Brazil with Finance Code 001.
-
Data availability: Not applicable.
References
1. Pandey, S., Do, J. Y., Kim, J., Kang, M. Carbohydr. Polym. 2020, 230, 115597. https://doi.org/10.1016/j.carbpol.2019.115597.Search in Google Scholar PubMed
2. Fong, W. M., Affam, A. C., Chung, W. C. Int. J. Environ. Sci. Technol. 2020, 17, 3485–3494. https://doi.org/10.1007/s13762-020-02720-1.Search in Google Scholar
3. Din, M. I., Khalid, R., Najeeb, J., Hussain, Z. J. Cleaner Prod. 2021, 298, 126567, https://doi.org/10.1016/j.jclepro.2021.126567.Search in Google Scholar
4. Kuncewicz, J., Zbek, P., Stochel, G., Stasicka, Z., Macyk, W. Catal. Today 2011, 161, 78–83. https://doi.org/10.1016/j.cattod.2010.10.075.Search in Google Scholar
5. Das, R. S., Warkhade, S. K., Kumar, A., Wankhade, A. V. Res. Chem. Intermed. 2019, 45, 1689–1705. https://doi.org/10.1007/s11164-018-3699-z.Search in Google Scholar
6. Fabbro, M. T., Gracia, L., Silva, G. S., Santos, L. P. S., Andrés, J., Cordoncillo, E., Longo, E. J. Solid State Chem. 2016, 239, 220–227. https://doi.org/10.1016/j.jssc.2016.03.050.Search in Google Scholar
7. Fabbro, M. T., dos Santos, L. P. S., Santos, V. M. F. E., Yamamoto, F. D. M., Matsushima, J. T., Baldan, M. R. J. Eng. Res. 2022, 2, 2–10. https://doi.org/10.22533/at.ed.317222230015.Search in Google Scholar
8. Warkhade, S. K., Das, R. S., Gaikwad, G. S., Pratap, U. R., Zodape, S. P., Wankhade, A. V. Environ. Prog. Sustainable Energy 2019, 38, 13071, https://doi.org/10.1002/ep.13071.Search in Google Scholar
9. Xie, J., Yang, Y., He, H., Cheng, D., Mao, M., Jiang, Q., Song, L., Xiong, J. Appl. Surf. Sci. 2015, 355, 921–929. https://doi.org/10.1016/j.apsusc.2015.07.175.Search in Google Scholar
10. Xu, D., Cheng, B., Zhang, J., Wang, W., Yu, J., Ho, W. J. Mater. Chem. A 2015, 3, 20153–20166. https://doi.org/10.1039/c5ta05248c.Search in Google Scholar
11. Zhu, J., Fan, H., Sun, J., Ai, S. Sep. Purif. Technol. 2013, 120, 134–140. https://doi.org/10.1016/j.seppur.2013.09.043.Search in Google Scholar
12. Li, J., Liu, F., Li, Y. New J. Chem. 2018, 42, 12054–12061. https://doi.org/10.1039/c8nj02327a.Search in Google Scholar
13. Samsuddin, A. F., Aziz, S. N. Q. A. A., Pung, S. Y. Appl. Phys. A: Mater. Sci. Process. 2017, 123, 101, https://doi.org/10.1007/s00339-016-0699-y.Search in Google Scholar
14. Liu, W., Liu, X., Fu, Y., You, Q., Huang, R., Liu, P., Li, Z. Appl. Catal., B 2012, 123–124, 78–83. https://doi.org/10.1016/j.apcatb.2012.04.033.Search in Google Scholar
15. Singh, R. P., Khagar, P. S., Mourya, A. K., Warkhade, S. K., Zodape, S. P., Pratap, U. R., Wankhade, A. V. Mater. Sci. Semicond. Process. 2022, 143, 106526, https://doi.org/10.1016/j.mssp.2022.106526.Search in Google Scholar
16. Li, X., Ouyang, S., Kikugawa, N., Ye, J. Appl. Catal., A 2008, 334, 51–58. https://doi.org/10.1016/j.apcata.2007.09.033.Search in Google Scholar
17. Ouyang, S., Li, Z., Ouyang, Z., Yu, T., Ye, J., Zou, Z. J. Phys. Chem. C 2008, 112, 3134–3141. https://doi.org/10.1021/jp077127w.Search in Google Scholar
18. Thakare, S. R., Gaikwad, G. S., Khati, N. T., Wankhade, A. V. Catal. Commun. 2015, 62, 39–43. https://doi.org/10.1016/j.catcom.2014.12.027.Search in Google Scholar
19. Singh, R. P., Warkhade, S. K., Das, R. S., Gaikwad, G. S., Prasad, S., Wankhade, A. V. Inorg. Chem. Commun. 2022, 145, 110035. https://doi.org/10.1016/j.inoche.2022.110035.Search in Google Scholar
20. Darr, J. A., Zhang, J., Makwana, N. M., Weng, X. Chem. Rev. 2017, 117, 11125–11238. https://doi.org/10.1021/acs.chemrev.6b00417.Search in Google Scholar PubMed
21. Meng, L. Y., Wang, B., Ma, M. G., Lin, K. L. Mater. Today Chem. 2016, 1–2, 63–83. https://doi.org/10.1016/j.mtchem.2016.11.003.Search in Google Scholar
22. Pereira, E. B., Martins, F. R., Rodrigues Gonçalves, A., Santos Costa, R., Lopes de Lima, F. J., Rüther, R., Luna de Abreu, S., Máximo Tiepolo, G., Vitorino Pereira, S. Jefferson Gonçalves de Souza, Atlas Brasileiro de Energia Solar; INPE: São José dos Campos, 2017.10.34024/978851700089Search in Google Scholar
23. Guo, Z., Wang, G., Fu, H., Wang, P., Liao, J., Wang, A. RSC Adv. 2020, 10, 26133–26141. https://doi.org/10.1039/d0ra02076a.Search in Google Scholar PubMed PubMed Central
24. Das, R. S., Warkhade, S. K., Kumar, A., Gaikwad, G. S., Wankhade, A. V. J. Alloys Compd. 2020, 846, 155770, https://doi.org/10.1016/j.jallcom.2020.155770.Search in Google Scholar
25. Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., Silva, A. M. T. Environ. Int. 2015, 75, 33–51. https://doi.org/10.1016/j.envint.2014.10.027.Search in Google Scholar PubMed
26. Navrotsky, A., Wang, V., Kiem, A. N., Stevens, R., Woodfield, B. F., Boerio, J. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. 2004, 101, 12096–12101.10.1073/pnas.0404778101Search in Google Scholar PubMed PubMed Central
27. Yoshimura, M., Byrappa, K. J. Mater. Sci. 2008, 43, 2085–2103. https://doi.org/10.1007/s10853-007-1853-x.Search in Google Scholar
28. Kharisov, B. I., Kharissova, O. V., Ortiz, U. The Development and Application of Microwave Heating; InTech, 2012.Search in Google Scholar
29. Gawande, M. B., Shelke, S. N., Zboril, R., Varma, R. S. Acc. Chem. Res. 2014, 47, 1338–1348. https://doi.org/10.1021/ar400309b.Search in Google Scholar PubMed
30. Jhung, S. H., Jin, T., Hwang, Y. K., Chang, J. S. Chem.—Eur. J. 2007, 13, 4410–4417. https://doi.org/10.1002/chem.200700098.Search in Google Scholar PubMed
31. Longo, E., Cavalcante, L. S., Volanti, D. P., Gouveia, A. F., Longo, V. M., Varela, J. A., Orlandi, M. O., Andrés, J. Sci. Rep. 2013, 3, 1676. https://doi.org/10.1038/srep01676.Search in Google Scholar PubMed PubMed Central
32. Liu, F. X., Li, T. Z., Zhang, H. F. Phys. Status Solidi A 2004, 201, 776–781. https://doi.org/10.1002/pssa.200306755.Search in Google Scholar
33. Kubelka, F., Munk, P. Ein Beitrag zur Optik der Farban striche. Z. Tech. Phys. 1931, 12, 593–603.Search in Google Scholar
34. Myrick, M. L., Simcock, M. N., Baranowski, M., Brooke, H., Morgan, S. L., McCutcheon, J. N. Appl. Spectrosc. Rev. 2011, 46, 140–165. https://doi.org/10.1080/05704928.2010.537004.Search in Google Scholar
35. Hilsum, C. Semiconductors (2nd edn). Phys. Bull. 1979, 30, 528. https://doi.org/10.1088/0031-9112/30/12/049.Search in Google Scholar
36. Gouveia, A. F., Sczancoski, J. C., Ferrer, M. M., Lima, A. S., Santos, M. R. M. C., Li, M. S., Santos, R. S., Longo, E., Cavalcante, L. S. Inorg. Chem. 2014, 53, 5589–5599. https://doi.org/10.1021/ic500335x.Search in Google Scholar PubMed
37. Xu, H., Shen, X., Khan, M. A., Wang, F., Lei, W., Xia, M. J. Nanopart. Res. 2020, 22, 1–13. https://doi.org/10.1007/s11051-020-4768-y.Search in Google Scholar
38. Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., Li, Z. Adv. Mater. Sci. Eng. 2014, 2014, 1–7. https://doi.org/10.1155/2014/170148.Search in Google Scholar
39. Kröger, F. A., Vink, H. J. Facet-dependent photocatalytic and antibacterial properties of α-Ag2WO4 crystals: combining experimental data and theoretical insights. Catal. Sci. Technol. 1956, 3, 307–435. https://doi.org/10.1016/S0081-1947(08)60135-6.Search in Google Scholar
40. Roca, R. A., Sczancoski, J. C., Nogueira, I. C., Fabbro, M. T., Alves, H. C., Gracia, L., Santos, L. P. S., de Sousa, C. P., Andrés, J., Luz, G. E., Longo, E., Cavalcante, L. S. Catal. Sci. Technol. 2015, 5, 4091–4107. https://doi.org/10.1039/C5CY00331H.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation and characterization of stannous phosphate glass – polytetrafluoroethylene composites
- A novel investigation of co-processing porous geopolymer using glass fibres recycled from waste turbine blades
- Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
- Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
- Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation and characterization of stannous phosphate glass – polytetrafluoroethylene composites
- A novel investigation of co-processing porous geopolymer using glass fibres recycled from waste turbine blades
- Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
- Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
- Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
- News
- DGM – Deutsche Gesellschaft für Materialkunde