Home Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
Article
Licensed
Unlicensed Requires Authentication

Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity

  • Maria Tereza Fabbro ORCID logo EMAIL logo , Luís P. S. Santos , Felipe M. Yamamoto , Jorge T. Matsushima and Maurício R. Baldan
Published/Copyright: April 5, 2024
Become an author with De Gruyter Brill

Abstract

This paper describes the synthesis of Ag2ZrO3 nanocrystals using coprecipitation and microwave-assisted hydrothermal methods. These nanocrystals were characterized by means of X-ray diffraction, micro-Raman spectroscopy, Fourier transform infrared absorption spectroscopy, field emission scanning electron microscopy, and UV–Visible spectroscopy, and their photocatalytic performance for methylene blue degradation under visible-light irradiation has been tested. The X-ray diffraction, micro-Raman spectroscopy, Fourier transform infrared absorption spectroscopy analyses indicate that the Ag2ZrO3 nanocrystals have good crystallinity and no secondary phases. The UV–Visible spectroscopy results showed a variation in the optical band gap values (2.71–2.97 eV) with increasing temperature, which indicates the possible presence of defects in the crystal lattice at a medium range. Field emission scanning electron microscopy images revealed that the nanocrystals have uneven spherical shapes and average particle size around 50–70 nm. The good photocatalytic efficiency can be attributed to defects in the silver zirconate structure capable of forming the active adsorption sites. Finally, we discuss a photocatalytic mechanism to understand the photocatalytic process in cationic dye (methylene blue) degradation in aqueous solution.


Corresponding author: Maria Tereza Fabbro, Instituto Federal de São Paulo, Campus São José dos Campos, Rod. Presidente Dutra km 145, CEP 12223-201, São José dos Campos, SP, Brazil; and Laboratório Associado de Sensores e Materiais, INPE – Instituto Nacional de Pesquisas Espaciais, CEP 12227-010, São José dos Campos, São Paulo, Brazil, E-mail:

Acknowledgments

Thanks to the Instituto Nacional de Pesquisas Espaciais (INPE) and the Federal University of São Paulo for supporting us with all the necessary facilities during the research.

  1. Research ethics: None declared.

  2. Author contributions: Conceptualization, M. T. Fabbro and L. P. S. Santos; methodology, M. T. Fabbro and F. M. Yamamoto; validation, L. P. S. Santos, J. T. Matsushima and M. R. Baldan; experimental investigation, M. T. Fabbro; data curation, M. T. Fabbro, F. M. Yamamoto and L. P. S. Santos; writing – original draft preparation, M. T. Fabbro; writing – review and editing, M. T. Fabbro, L. P. S. Santos and M. R. Baldan; funding acquisition, M. R. Baldan and L. P. S. Santos. All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors are thankful for the financial support of the following Brazilian research funding institutions: the Financiadora de Estudos e Projetos (FINEP/N° 01.16.0076-00) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Brazil with Finance Code 001.

  5. Data availability: Not applicable.

References

1. Pandey, S., Do, J. Y., Kim, J., Kang, M. Carbohydr. Polym. 2020, 230, 115597. https://doi.org/10.1016/j.carbpol.2019.115597.Search in Google Scholar PubMed

2. Fong, W. M., Affam, A. C., Chung, W. C. Int. J. Environ. Sci. Technol. 2020, 17, 3485–3494. https://doi.org/10.1007/s13762-020-02720-1.Search in Google Scholar

3. Din, M. I., Khalid, R., Najeeb, J., Hussain, Z. J. Cleaner Prod. 2021, 298, 126567, https://doi.org/10.1016/j.jclepro.2021.126567.Search in Google Scholar

4. Kuncewicz, J., Zbek, P., Stochel, G., Stasicka, Z., Macyk, W. Catal. Today 2011, 161, 78–83. https://doi.org/10.1016/j.cattod.2010.10.075.Search in Google Scholar

5. Das, R. S., Warkhade, S. K., Kumar, A., Wankhade, A. V. Res. Chem. Intermed. 2019, 45, 1689–1705. https://doi.org/10.1007/s11164-018-3699-z.Search in Google Scholar

6. Fabbro, M. T., Gracia, L., Silva, G. S., Santos, L. P. S., Andrés, J., Cordoncillo, E., Longo, E. J. Solid State Chem. 2016, 239, 220–227. https://doi.org/10.1016/j.jssc.2016.03.050.Search in Google Scholar

7. Fabbro, M. T., dos Santos, L. P. S., Santos, V. M. F. E., Yamamoto, F. D. M., Matsushima, J. T., Baldan, M. R. J. Eng. Res. 2022, 2, 2–10. https://doi.org/10.22533/at.ed.317222230015.Search in Google Scholar

8. Warkhade, S. K., Das, R. S., Gaikwad, G. S., Pratap, U. R., Zodape, S. P., Wankhade, A. V. Environ. Prog. Sustainable Energy 2019, 38, 13071, https://doi.org/10.1002/ep.13071.Search in Google Scholar

9. Xie, J., Yang, Y., He, H., Cheng, D., Mao, M., Jiang, Q., Song, L., Xiong, J. Appl. Surf. Sci. 2015, 355, 921–929. https://doi.org/10.1016/j.apsusc.2015.07.175.Search in Google Scholar

10. Xu, D., Cheng, B., Zhang, J., Wang, W., Yu, J., Ho, W. J. Mater. Chem. A 2015, 3, 20153–20166. https://doi.org/10.1039/c5ta05248c.Search in Google Scholar

11. Zhu, J., Fan, H., Sun, J., Ai, S. Sep. Purif. Technol. 2013, 120, 134–140. https://doi.org/10.1016/j.seppur.2013.09.043.Search in Google Scholar

12. Li, J., Liu, F., Li, Y. New J. Chem. 2018, 42, 12054–12061. https://doi.org/10.1039/c8nj02327a.Search in Google Scholar

13. Samsuddin, A. F., Aziz, S. N. Q. A. A., Pung, S. Y. Appl. Phys. A: Mater. Sci. Process. 2017, 123, 101, https://doi.org/10.1007/s00339-016-0699-y.Search in Google Scholar

14. Liu, W., Liu, X., Fu, Y., You, Q., Huang, R., Liu, P., Li, Z. Appl. Catal., B 2012, 123–124, 78–83. https://doi.org/10.1016/j.apcatb.2012.04.033.Search in Google Scholar

15. Singh, R. P., Khagar, P. S., Mourya, A. K., Warkhade, S. K., Zodape, S. P., Pratap, U. R., Wankhade, A. V. Mater. Sci. Semicond. Process. 2022, 143, 106526, https://doi.org/10.1016/j.mssp.2022.106526.Search in Google Scholar

16. Li, X., Ouyang, S., Kikugawa, N., Ye, J. Appl. Catal., A 2008, 334, 51–58. https://doi.org/10.1016/j.apcata.2007.09.033.Search in Google Scholar

17. Ouyang, S., Li, Z., Ouyang, Z., Yu, T., Ye, J., Zou, Z. J. Phys. Chem. C 2008, 112, 3134–3141. https://doi.org/10.1021/jp077127w.Search in Google Scholar

18. Thakare, S. R., Gaikwad, G. S., Khati, N. T., Wankhade, A. V. Catal. Commun. 2015, 62, 39–43. https://doi.org/10.1016/j.catcom.2014.12.027.Search in Google Scholar

19. Singh, R. P., Warkhade, S. K., Das, R. S., Gaikwad, G. S., Prasad, S., Wankhade, A. V. Inorg. Chem. Commun. 2022, 145, 110035. https://doi.org/10.1016/j.inoche.2022.110035.Search in Google Scholar

20. Darr, J. A., Zhang, J., Makwana, N. M., Weng, X. Chem. Rev. 2017, 117, 11125–11238. https://doi.org/10.1021/acs.chemrev.6b00417.Search in Google Scholar PubMed

21. Meng, L. Y., Wang, B., Ma, M. G., Lin, K. L. Mater. Today Chem. 2016, 1–2, 63–83. https://doi.org/10.1016/j.mtchem.2016.11.003.Search in Google Scholar

22. Pereira, E. B., Martins, F. R., Rodrigues Gonçalves, A., Santos Costa, R., Lopes de Lima, F. J., Rüther, R., Luna de Abreu, S., Máximo Tiepolo, G., Vitorino Pereira, S. Jefferson Gonçalves de Souza, Atlas Brasileiro de Energia Solar; INPE: São José dos Campos, 2017.10.34024/978851700089Search in Google Scholar

23. Guo, Z., Wang, G., Fu, H., Wang, P., Liao, J., Wang, A. RSC Adv. 2020, 10, 26133–26141. https://doi.org/10.1039/d0ra02076a.Search in Google Scholar PubMed PubMed Central

24. Das, R. S., Warkhade, S. K., Kumar, A., Gaikwad, G. S., Wankhade, A. V. J. Alloys Compd. 2020, 846, 155770, https://doi.org/10.1016/j.jallcom.2020.155770.Search in Google Scholar

25. Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., Silva, A. M. T. Environ. Int. 2015, 75, 33–51. https://doi.org/10.1016/j.envint.2014.10.027.Search in Google Scholar PubMed

26. Navrotsky, A., Wang, V., Kiem, A. N., Stevens, R., Woodfield, B. F., Boerio, J. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. 2004, 101, 12096–12101.10.1073/pnas.0404778101Search in Google Scholar PubMed PubMed Central

27. Yoshimura, M., Byrappa, K. J. Mater. Sci. 2008, 43, 2085–2103. https://doi.org/10.1007/s10853-007-1853-x.Search in Google Scholar

28. Kharisov, B. I., Kharissova, O. V., Ortiz, U. The Development and Application of Microwave Heating; InTech, 2012.Search in Google Scholar

29. Gawande, M. B., Shelke, S. N., Zboril, R., Varma, R. S. Acc. Chem. Res. 2014, 47, 1338–1348. https://doi.org/10.1021/ar400309b.Search in Google Scholar PubMed

30. Jhung, S. H., Jin, T., Hwang, Y. K., Chang, J. S. Chem.—Eur. J. 2007, 13, 4410–4417. https://doi.org/10.1002/chem.200700098.Search in Google Scholar PubMed

31. Longo, E., Cavalcante, L. S., Volanti, D. P., Gouveia, A. F., Longo, V. M., Varela, J. A., Orlandi, M. O., Andrés, J. Sci. Rep. 2013, 3, 1676. https://doi.org/10.1038/srep01676.Search in Google Scholar PubMed PubMed Central

32. Liu, F. X., Li, T. Z., Zhang, H. F. Phys. Status Solidi A 2004, 201, 776–781. https://doi.org/10.1002/pssa.200306755.Search in Google Scholar

33. Kubelka, F., Munk, P. Ein Beitrag zur Optik der Farban striche. Z. Tech. Phys. 1931, 12, 593–603.Search in Google Scholar

34. Myrick, M. L., Simcock, M. N., Baranowski, M., Brooke, H., Morgan, S. L., McCutcheon, J. N. Appl. Spectrosc. Rev. 2011, 46, 140–165. https://doi.org/10.1080/05704928.2010.537004.Search in Google Scholar

35. Hilsum, C. Semiconductors (2nd edn). Phys. Bull. 1979, 30, 528. https://doi.org/10.1088/0031-9112/30/12/049.Search in Google Scholar

36. Gouveia, A. F., Sczancoski, J. C., Ferrer, M. M., Lima, A. S., Santos, M. R. M. C., Li, M. S., Santos, R. S., Longo, E., Cavalcante, L. S. Inorg. Chem. 2014, 53, 5589–5599. https://doi.org/10.1021/ic500335x.Search in Google Scholar PubMed

37. Xu, H., Shen, X., Khan, M. A., Wang, F., Lei, W., Xia, M. J. Nanopart. Res. 2020, 22, 1–13. https://doi.org/10.1007/s11051-020-4768-y.Search in Google Scholar

38. Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., Li, Z. Adv. Mater. Sci. Eng. 2014, 2014, 1–7. https://doi.org/10.1155/2014/170148.Search in Google Scholar

39. Kröger, F. A., Vink, H. J. Facet-dependent photocatalytic and antibacterial properties of α-Ag2WO4 crystals: combining experimental data and theoretical insights. Catal. Sci. Technol. 1956, 3, 307–435. https://doi.org/10.1016/S0081-1947(08)60135-6.Search in Google Scholar

40. Roca, R. A., Sczancoski, J. C., Nogueira, I. C., Fabbro, M. T., Alves, H. C., Gracia, L., Santos, L. P. S., de Sousa, C. P., Andrés, J., Luz, G. E., Longo, E., Cavalcante, L. S. Catal. Sci. Technol. 2015, 5, 4091–4107. https://doi.org/10.1039/C5CY00331H.Search in Google Scholar

Received: 2023-07-28
Accepted: 2023-11-02
Published Online: 2024-04-05
Published in Print: 2024-05-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0233/html
Scroll to top button