Home Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
Article
Licensed
Unlicensed Requires Authentication

Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites

  • Vikash Gautam , Amar Patnaik , Inder K. Bhat , Vikas Kukshal ORCID logo EMAIL logo , Manoj J. Pawar and Ashiwani Kumar
Published/Copyright: April 26, 2024
Become an author with De Gruyter Brill

Abstract

In the present research, uncoated and coated (CrN/SiN–CrN) granite dust reinforced aluminum alloy (AA 1050, AA 5083) composites samples were fabricated using stir casting and their physical, mechanical and slurry erosion behavior were assessed. The study reveal a persistent increase in void content, hardness, impact strength and stress intensity factor for both uncoated and coated alloy with the inclusion of reinforcement. In contrast, flexural strength and corrosion rate decrease continuously with increased granite content and also with the corresponding coating. Multilayer coated 5083 aluminum alloy composite with 6 wt.% granite particle shows maximum hardness, impact strength and stress intensity factor and minimum slurry erosion rate. The entropy method was applied to the operating parameter to rank the fabricated composites. The performance of each operating parameter is determined using the VIKOR (Vise Kriterijumska Optimizacija Kompromisno Resenje) optimization method. The optimal formulation based on Performance-Defining Attributes (PDAs) is observed for multilayer-coated 6 wt.% granite particulate reinforced 5083 aluminum alloy composites.


Corresponding author: Vikas Kukshal, Department of Mechanical Engineering, National Institute of Technology, Uttarakhand, Srinagar (Garhwal) – 246174, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The author have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Kukshal, V.; Gangwar, S.; Patnaik, A. Proc. Inst. Mech. Eng., Part L 2015, 229, 91–105. https://doi.org/10.1177/1464420713499513.Search in Google Scholar

2. Kukshal, V.; Gangwar, S.; Patnaik, A. Proc. Inst. Mech. Eng., Part L 2015, 229, 64–76. https://doi.org/10.1177/1464420713499514.Search in Google Scholar

3. Ramchandran, M.; Radhakrishnan, K. Wear 2007, 262, 1450–1462. https://doi.org/10.1016/j.wear.2007.01.026.Search in Google Scholar

4. Turenne, S.; Chatigny, Y.; Simard, D.; Caron, S.; Masounave, J. Wear 1990, 141, 147–158. https://doi.org/10.1016/0043-1648(90)90199-K.Search in Google Scholar

5. Gautam, V.; Patnaik, A.; Bhat, I. K. Silicon 2016, 8, 133–143. https://doi.org/10.1007/s12633-015-9318-3.Search in Google Scholar

6. Iwai, Y.; Miyajima, T.; Mizuno, A.; Honda, T.; Itou, T.; Hogmark, S. Wear 2009, 267, 264–269. https://doi.org/10.1016/j.wear.2009.02.014.Search in Google Scholar

7. Alegría-Ortega, J. A.; Ocampo-Carmona, L. M.; Suárez-Bustamante, F. A.; Olaya-Flórez, J. Wear 2012, 290, 149–153. https://doi.org/10.1016/j.wear.2012.04.007.Search in Google Scholar

8. Salgueiredo, E.; Almeida, F. A.; Amaral, M.; Neto, M.; Oliveira, F.; Silva, R. Wear 2013, 297, 1064–1073. https://doi.org/10.1016/j.wear.2012.11.051.Search in Google Scholar

9. Deng, J.; Wu, F.; Lian, Y.; Xing, Y.; Li, S. Int. J. Refract. Hard Met. 2012, 35, 10–16. https://doi.org/10.1016/j.ijrmhm.2012.03.002.Search in Google Scholar

10. Gautam, V.; Patnaik, A.; Bhat, I. K. Silicon 2016, 8, 417–435. https://doi.org/10.1007/s12633-015-9357-9.Search in Google Scholar

11. Grewal, H. S.; Bhandari, S.; Singh, H. Metall. Mater. Trans. A 2012, 43, 3387–3401. https://doi.org/10.1007/s11661-012-1148-y.Search in Google Scholar

12. Yoganandh, J.; Natarajan, S.; Babu, S. K. J. Mater. Eng. Perform. 2013, 22, 2534–2541. https://doi.org/10.1007/s11665-013-0539-6.Search in Google Scholar

13. Tang, X.; Bassir, D. H.; Zhang, W. Optim. Eng. 2011, 12, 111–128. https://doi.org/10.1007/s11081-010-9125-z.Search in Google Scholar

14. Papathanassiou, T. K.; Filopoulos, S. P.; Tsamasphyros, G. J. Optim. Eng. 2011, 12, 73–82. https://doi.org/10.1007/s11081-010-9116-0.Search in Google Scholar

15. Chen, A.; Subprasom, K.; Optim, Ji Z. Engineering 2006, 7, 225–247. https://doi.org/10.1007/s11081-006-9970-y.Search in Google Scholar

16. Singh, T.; Patnaik, A.; Satapathy, B. Walailak J. Sci. Tech. 2013, 10, 343–362. https://wjst.wu.ac.th/index.php/wjst/article/view/357.Search in Google Scholar

17. You, X. Y.; You, J. X.; Liu, H. C.; Zhen, L. Expert Syst. Appl. 2015, 42, 1906–1916. https://doi.org/10.1016/j.eswa.2014.10.004.Search in Google Scholar

18. Singh, T.; Patnaik, A.; Satapathy, B. K.; Kumar, M. Compos.: Mech. Comput. Appl. 2012, 3, 189–214. https://10.1615/CompMechComputApplIntJ.v3.i3.10.10.1615/CompMechComputApplIntJ.v3.i3.10Search in Google Scholar

19. Chen, T. Y. Inf. Sci. 2014, 263, 1–21. https://doi.org/10.1016/j.ins.2013.12.012.Search in Google Scholar

20. Deng, J. L. J.; Lin, Y. Grey Syst. 1989, 1, 1. https://doi.org/10.1007/978-3-642-16158-2_1.Search in Google Scholar

21. Singh, T.; Patnaik, A.; Gangil, B.; Chauhan, R. Wear 2015, 324, 10–16. https://doi.org/10.1016/j.wear.2014.11.020.Search in Google Scholar

22. Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Ph.D. Thesis, Faculty Civil Engineering Belgrade, 1998.Search in Google Scholar

23. Opricovic, S.; Tzeng, G. H. Eur. J. Oper. Res. 2007, 178, 514–529. https://doi.org/10.1016/j.ejor.2006.01.020.Search in Google Scholar

24. Cabrera, G.; Caicedo, J. C.; Amaya, C.; Yate, L.; Muñoz Saldaña, J.; Prieto, P. Mater. Chem. Phys. 2011, 25, 576–586. https://doi.org/10.1016/j.matchemphys.2010.10.014.Search in Google Scholar

25. Lee, J. W.; Duh, J. G.; Wang, J. H. Surf. Coat. Technol. 2003, 168, 223. https://doi.org/10.1016/S0257-8972(03)00222-6.Search in Google Scholar

26. Lee, C. M.; Chu, J. P.; Chang, W. Z.; Lee, J.; Jang, J.; Liaw, P. Thin Solid Films 2014, 561, 33–37. https://doi.org/10.1016/j.tsf.2013.08.027.Search in Google Scholar

27. Lopez, D.; Sánchez, C.; Toro, A. Wear 2005, 258, 1–4. https://doi.org/10.1016/j.wear.2004.09.015.Search in Google Scholar

28. Jegadeeswaran, N.; Ramesh, M. R.; Bhat, K. U. Procedia Eng. 2013, 64, 1013–1019. https://doi.org/10.1016/j.proeng.2013.09.178.Search in Google Scholar

29. Stack, M. M.; Wang, H. W. Wear 1999, 233, 542–551. https://doi.org/10.1016/S0043-1648(99)00216-1.Search in Google Scholar

30. Gautam, V.; Kumar, A.; Prasad, L.; Kumar Patel, V. Mater. Today Proc. 2017, 4, 9879–9882. https://doi.org/10.1016/j.matpr.2017.06.286.Search in Google Scholar

31. Kumar, A.; Kumar, M.; Kukshal, V.; Pandey, A.; Pawar, M. J.; Gautam, V. Mater. Today: Proc. 2021, 46, 6534–6540. https://doi.org/10.1016/j.matpr.2021.03.734.Search in Google Scholar

32. Kumar, A.; Kumar, M.; Pandey, B. Silicon 2022, 14, 2051–2065. https://doi.org/10.1007/s12633-021-00996-7.Search in Google Scholar

33. Huu, P. N.; Trong, L. N. Int. J. Interact. Des. Manuf. 2023, 17, 187–196. https://doi.org/10.1007/s12008-022-01121-7.Search in Google Scholar

34. Huu, P. N.; Muthuramalingam, T.; Dong, P. V.; Shirguppikar, S.; Tien, D. H.; Van, T. N.; Trong, L. N. J. Adv. Manuf. Technol. 2022, 122, 2267–2276. https://doi.org/10.1007/s00170-022-10022-8.Search in Google Scholar

35. Huu, P. N.; Muthuramalingam, T.; Dong, P. V.; Shirguppikar, S.; Nguyen, T. N.; Nguyen, T. C.; Nguyen, L. Y. T. Sādhanā 2022, 47 (133), 1–12. https://doi.org/10.1007/s12046-022-01900-8.Search in Google Scholar

36. Van, D. P.; Huu, P. N.; Minh, N. D. J. Mech. Behav. Mater. 2023, 32, 20220283–20220293. https://doi.org/10.1515/jmbm-2022-0283.Search in Google Scholar

Received: 2023-02-02
Accepted: 2023-10-10
Published Online: 2024-04-26
Published in Print: 2024-05-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0041/html
Scroll to top button