Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
Abstract
In the present research, uncoated and coated (CrN/SiN–CrN) granite dust reinforced aluminum alloy (AA 1050, AA 5083) composites samples were fabricated using stir casting and their physical, mechanical and slurry erosion behavior were assessed. The study reveal a persistent increase in void content, hardness, impact strength and stress intensity factor for both uncoated and coated alloy with the inclusion of reinforcement. In contrast, flexural strength and corrosion rate decrease continuously with increased granite content and also with the corresponding coating. Multilayer coated 5083 aluminum alloy composite with 6 wt.% granite particle shows maximum hardness, impact strength and stress intensity factor and minimum slurry erosion rate. The entropy method was applied to the operating parameter to rank the fabricated composites. The performance of each operating parameter is determined using the VIKOR (Vise Kriterijumska Optimizacija Kompromisno Resenje) optimization method. The optimal formulation based on Performance-Defining Attributes (PDAs) is observed for multilayer-coated 6 wt.% granite particulate reinforced 5083 aluminum alloy composites.
-
Research ethics: Not applicable.
-
Author contributions: The author have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no competing interests.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Kukshal, V.; Gangwar, S.; Patnaik, A. Proc. Inst. Mech. Eng., Part L 2015, 229, 91–105. https://doi.org/10.1177/1464420713499513.Search in Google Scholar
2. Kukshal, V.; Gangwar, S.; Patnaik, A. Proc. Inst. Mech. Eng., Part L 2015, 229, 64–76. https://doi.org/10.1177/1464420713499514.Search in Google Scholar
3. Ramchandran, M.; Radhakrishnan, K. Wear 2007, 262, 1450–1462. https://doi.org/10.1016/j.wear.2007.01.026.Search in Google Scholar
4. Turenne, S.; Chatigny, Y.; Simard, D.; Caron, S.; Masounave, J. Wear 1990, 141, 147–158. https://doi.org/10.1016/0043-1648(90)90199-K.Search in Google Scholar
5. Gautam, V.; Patnaik, A.; Bhat, I. K. Silicon 2016, 8, 133–143. https://doi.org/10.1007/s12633-015-9318-3.Search in Google Scholar
6. Iwai, Y.; Miyajima, T.; Mizuno, A.; Honda, T.; Itou, T.; Hogmark, S. Wear 2009, 267, 264–269. https://doi.org/10.1016/j.wear.2009.02.014.Search in Google Scholar
7. Alegría-Ortega, J. A.; Ocampo-Carmona, L. M.; Suárez-Bustamante, F. A.; Olaya-Flórez, J. Wear 2012, 290, 149–153. https://doi.org/10.1016/j.wear.2012.04.007.Search in Google Scholar
8. Salgueiredo, E.; Almeida, F. A.; Amaral, M.; Neto, M.; Oliveira, F.; Silva, R. Wear 2013, 297, 1064–1073. https://doi.org/10.1016/j.wear.2012.11.051.Search in Google Scholar
9. Deng, J.; Wu, F.; Lian, Y.; Xing, Y.; Li, S. Int. J. Refract. Hard Met. 2012, 35, 10–16. https://doi.org/10.1016/j.ijrmhm.2012.03.002.Search in Google Scholar
10. Gautam, V.; Patnaik, A.; Bhat, I. K. Silicon 2016, 8, 417–435. https://doi.org/10.1007/s12633-015-9357-9.Search in Google Scholar
11. Grewal, H. S.; Bhandari, S.; Singh, H. Metall. Mater. Trans. A 2012, 43, 3387–3401. https://doi.org/10.1007/s11661-012-1148-y.Search in Google Scholar
12. Yoganandh, J.; Natarajan, S.; Babu, S. K. J. Mater. Eng. Perform. 2013, 22, 2534–2541. https://doi.org/10.1007/s11665-013-0539-6.Search in Google Scholar
13. Tang, X.; Bassir, D. H.; Zhang, W. Optim. Eng. 2011, 12, 111–128. https://doi.org/10.1007/s11081-010-9125-z.Search in Google Scholar
14. Papathanassiou, T. K.; Filopoulos, S. P.; Tsamasphyros, G. J. Optim. Eng. 2011, 12, 73–82. https://doi.org/10.1007/s11081-010-9116-0.Search in Google Scholar
15. Chen, A.; Subprasom, K.; Optim, Ji Z. Engineering 2006, 7, 225–247. https://doi.org/10.1007/s11081-006-9970-y.Search in Google Scholar
16. Singh, T.; Patnaik, A.; Satapathy, B. Walailak J. Sci. Tech. 2013, 10, 343–362. https://wjst.wu.ac.th/index.php/wjst/article/view/357.Search in Google Scholar
17. You, X. Y.; You, J. X.; Liu, H. C.; Zhen, L. Expert Syst. Appl. 2015, 42, 1906–1916. https://doi.org/10.1016/j.eswa.2014.10.004.Search in Google Scholar
18. Singh, T.; Patnaik, A.; Satapathy, B. K.; Kumar, M. Compos.: Mech. Comput. Appl. 2012, 3, 189–214. https://10.1615/CompMechComputApplIntJ.v3.i3.10.10.1615/CompMechComputApplIntJ.v3.i3.10Search in Google Scholar
19. Chen, T. Y. Inf. Sci. 2014, 263, 1–21. https://doi.org/10.1016/j.ins.2013.12.012.Search in Google Scholar
20. Deng, J. L. J.; Lin, Y. Grey Syst. 1989, 1, 1. https://doi.org/10.1007/978-3-642-16158-2_1.Search in Google Scholar
21. Singh, T.; Patnaik, A.; Gangil, B.; Chauhan, R. Wear 2015, 324, 10–16. https://doi.org/10.1016/j.wear.2014.11.020.Search in Google Scholar
22. Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Ph.D. Thesis, Faculty Civil Engineering Belgrade, 1998.Search in Google Scholar
23. Opricovic, S.; Tzeng, G. H. Eur. J. Oper. Res. 2007, 178, 514–529. https://doi.org/10.1016/j.ejor.2006.01.020.Search in Google Scholar
24. Cabrera, G.; Caicedo, J. C.; Amaya, C.; Yate, L.; Muñoz Saldaña, J.; Prieto, P. Mater. Chem. Phys. 2011, 25, 576–586. https://doi.org/10.1016/j.matchemphys.2010.10.014.Search in Google Scholar
25. Lee, J. W.; Duh, J. G.; Wang, J. H. Surf. Coat. Technol. 2003, 168, 223. https://doi.org/10.1016/S0257-8972(03)00222-6.Search in Google Scholar
26. Lee, C. M.; Chu, J. P.; Chang, W. Z.; Lee, J.; Jang, J.; Liaw, P. Thin Solid Films 2014, 561, 33–37. https://doi.org/10.1016/j.tsf.2013.08.027.Search in Google Scholar
27. Lopez, D.; Sánchez, C.; Toro, A. Wear 2005, 258, 1–4. https://doi.org/10.1016/j.wear.2004.09.015.Search in Google Scholar
28. Jegadeeswaran, N.; Ramesh, M. R.; Bhat, K. U. Procedia Eng. 2013, 64, 1013–1019. https://doi.org/10.1016/j.proeng.2013.09.178.Search in Google Scholar
29. Stack, M. M.; Wang, H. W. Wear 1999, 233, 542–551. https://doi.org/10.1016/S0043-1648(99)00216-1.Search in Google Scholar
30. Gautam, V.; Kumar, A.; Prasad, L.; Kumar Patel, V. Mater. Today Proc. 2017, 4, 9879–9882. https://doi.org/10.1016/j.matpr.2017.06.286.Search in Google Scholar
31. Kumar, A.; Kumar, M.; Kukshal, V.; Pandey, A.; Pawar, M. J.; Gautam, V. Mater. Today: Proc. 2021, 46, 6534–6540. https://doi.org/10.1016/j.matpr.2021.03.734.Search in Google Scholar
32. Kumar, A.; Kumar, M.; Pandey, B. Silicon 2022, 14, 2051–2065. https://doi.org/10.1007/s12633-021-00996-7.Search in Google Scholar
33. Huu, P. N.; Trong, L. N. Int. J. Interact. Des. Manuf. 2023, 17, 187–196. https://doi.org/10.1007/s12008-022-01121-7.Search in Google Scholar
34. Huu, P. N.; Muthuramalingam, T.; Dong, P. V.; Shirguppikar, S.; Tien, D. H.; Van, T. N.; Trong, L. N. J. Adv. Manuf. Technol. 2022, 122, 2267–2276. https://doi.org/10.1007/s00170-022-10022-8.Search in Google Scholar
35. Huu, P. N.; Muthuramalingam, T.; Dong, P. V.; Shirguppikar, S.; Nguyen, T. N.; Nguyen, T. C.; Nguyen, L. Y. T. Sādhanā 2022, 47 (133), 1–12. https://doi.org/10.1007/s12046-022-01900-8.Search in Google Scholar
36. Van, D. P.; Huu, P. N.; Minh, N. D. J. Mech. Behav. Mater. 2023, 32, 20220283–20220293. https://doi.org/10.1515/jmbm-2022-0283.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation and characterization of stannous phosphate glass – polytetrafluoroethylene composites
- A novel investigation of co-processing porous geopolymer using glass fibres recycled from waste turbine blades
- Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
- Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
- Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation and characterization of stannous phosphate glass – polytetrafluoroethylene composites
- A novel investigation of co-processing porous geopolymer using glass fibres recycled from waste turbine blades
- Effect of heat treatment on the microstructure and mechanical properties of biocompatible Ti–Ta–Nb–Zr alloys prepared by selective laser melting
- Optimization of physico-mechanical and erosive wear properties of single/multilayer – coated granite filled aluminum alloy composites
- Facile synthesis of Ag2ZrO3 nanocrystals with highly enhanced visible-light photocatalytic activity
- News
- DGM – Deutsche Gesellschaft für Materialkunde