Home Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
Article
Licensed
Unlicensed Requires Authentication

Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes

  • Xiaoyu Wang , Zizhan Sun , Chunhu Yu , Zhengyu Cai , Chuangang Fan and Lizhai Pei ORCID logo EMAIL logo
Published/Copyright: February 16, 2023
Become an author with De Gruyter Brill

Abstract

Bi2O3/Dy2O3 nanoflakes with triclinic Bi2O3 and cubic Dy2O3 phases were synthesized by a hexadecyl trimethyl ammonium bromide (CTAB)-assisted hydrothermal route. The Bi2O3/Dy2O3 nanoflakes were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, electron microscopy and electrochemical impedance spectroscopy. The size of the Bi2O3/Dy2O3 nanoflakes with curled surface is about 2 μm and thickness is about 25 nm. X-ray photoelectron spectroscopy confirms the chemical composition of the Bi2O3/Dy2O3 nanoflakes. The formation process of the Bi2O3/Dy2O3 nanoflakes was investigated by controlling the CTAB concentration, reaction temperature and reaction time. The formation of the Bi2O3/Dy2O3 nanoflakes depends on CTAB. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy demonstrate good electro-catalytic activity of the Bi2O3/Dy2O3 nanoflakes towards L-cysteine with a pair of quasi-reversible CV peaks at +0.01 V and –0.68 V, respectively. Bi2O3/Dy2O3 nanoflakes modified electrode detects L-cysteine linearly over a concentration ranging from 0.001 to 2 mM with a detection limit of 0.32 μM. The proposed nanocomposites modified electrode possesses good reproducibility and stability which can be used as a promising candidate for L-cysteine detection.


Corresponding author: Lizhai Pei, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation of Anhui Province of P. R. China (2008085ME172), National Scholarship Fund of China Scholarship Council (CSC) (202008340046) and Student Innovation and Entrepreneurship Training Program of P. R. China (202210360026).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., Fakhari, A. R. Biosens. Bioelectron. 2013, 42, 426. https://doi.org/10.1016/j.bios.2012.09.062.Search in Google Scholar PubMed

2. Gupta, V. K., Shamsadin-Azad, Z., Cheraghi, S., Agarwai, S., Taher, M. A., Karimi, F. Int. J. Electrochem. Sci. 2018, 13, 4309. https://doi.org/10.20964/2018.05.53.Search in Google Scholar

3. Nie, L. H., Ma, H. M., Sun, M., Li, X. H., Su, M. H., Liang, S. C. Talanta 2003, 59, 959. https://doi.org/10.1016/s0039-9140(02)00649-5.Search in Google Scholar

4. Rani, B. K., John, S. A. Biosens. Bioelectron. 2016, 83, 237. https://doi.org/10.1016/j.bios.2016.04.013.Search in Google Scholar PubMed

5. Tu, C. Q., Wen, X. R. E3S Web. Conf. 2021, 245, 03023. https://doi.org/10.1051/e3sconf/202124503023.Search in Google Scholar

6. Gavrilova, T. B., Kiselev, A. V., Kulikov, N. S., Vlasenko, E. V. Chromatographia 1986, 22, 59. https://doi.org/10.1007/BF02257299.Search in Google Scholar

7. Kuśmierek, K., Głowacki, R., Bald, E. Anal. Bioanal. Chem. 2006, 385, 855. https://doi.org/10.1007/s00216-006-0454-x.Search in Google Scholar PubMed

8. Yang, S. M., Zheng, Y., Zhang, X. R., Ding, S. Q., Li, L. L., Zha, W. L. J. Solid State Electrochem. 2016, 20, 2037. https://doi.org/10.1007/s10008-016-3213-8.Search in Google Scholar

9. Pei, L. Z., Wei, T., Lin, N., Cai, Z. Y., Fan, C. G., Yang, Z. J. Electrochem. Soc. 2016, 163, H1. https://doi.org/110.1149/2.0041602jes.10.1149/2.0041602jesSearch in Google Scholar

10. Pei, L. Z., Wei, T., Lin, N., Zhang, H., Fan, C. G. Russ. J. Electrochem. 2018, 54, 84. https://doi.org/10.1134/s102319351711012x.Search in Google Scholar

11. Upan, J., Lerdsri, J., Soongsong, J., Mool-am-kha, P., Sridara, T., Reanpang, P., Jakmunee, J. Analyst 2022, 147, 2170. https://doi.org/10.1039/D2AN00346E.Search in Google Scholar PubMed

12. Jean, C. N., Bai, J., Qi, B., Guo, L. P. Anal. Biochem. 2009, 386, 79. https://doi.org/10.1016/j.ab.2008.11.041.Search in Google Scholar PubMed

13. Razmi, H., Habibi, E. Electroanalysis 2009, 21, 867. https://doi.org/10.1002/elan.200804487.Search in Google Scholar

14. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Yu, H. Y. CrystEngComm 2013, 15, 1729. https://doi.org/10.1039/c2ce26592c.Search in Google Scholar

15. Su, W. Y., Cheng, S. H. Electrochem. Commun. 2008, 10, 899. https://doi.org/10.1016/j.elecom.2008.04.013.Search in Google Scholar

16. Zhou, M., Ding, J., Guo, L. P., Shang, Q. K. Anal. Chem. 2007, 79, 5328. https://doi.org/0.1021/ac0703707.10.1021/ac0703707Search in Google Scholar PubMed

17. Ziyatdinova, G., Kozlova, E., Budnikov, H. Electrochim. Acta 2018, 270, 369. https://doi.org/10.1016/j.electacta.2018.03.102.Search in Google Scholar

18. Varodi, C., Pogacean, F., Ciorita, A., Pana, O., Leostean, C., Cozar, B., Radu, T., Coros, M., Staden, R. I. S., Pruneanu, S. M. Chemosensors 2021, 9, 146. https://doi.org/10.3390/chemosensors9060146.Search in Google Scholar

19. Atapour, M., Amoabediny, G., Ahmadzadeh-Raji, M. RSC Adv. 2019, 9, 8882. https://doi.org/10.1039/C8RA09659G.Search in Google Scholar PubMed PubMed Central

20. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M., Jayavel, R. Inorg. Chem. Commun. 2020, 113, 107793. https://doi.org/10.1016/j.inoche.2020.107793.Search in Google Scholar

21. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M. J. Alloys Compd. 2019, 792, 1151. https://doi.org/10.1016/j.jallcom.2019.04.127.Search in Google Scholar

22. Ge, S. G., Yan, M., Lu, J. J., Zhang, M., Yu, F., Yu, J. H., Song, X. R., Yu, S. L. Biosens. Bioelectron. 2012, 31, 49. https://doi.org/10.1016/j.bios.2011.09.038.Search in Google Scholar PubMed

23. Farsi, H., Moghminia, S., Roohi, A., Hosseini, S. A. Electrochim. Acta 2014, 148, 93. https://doi.org/10.1016/j.electacta.2014.10.040.10.1016/j.electacta.2014.10.040Search in Google Scholar

24. Yamuna, A., Sundaresan, P., Chen, S. M. Ultrason. Sonochem. 2020, 64, 105014. https://doi.org/10.1016/j.ultsonch.2020.105014.Search in Google Scholar PubMed

25. Kokulnathan, T., Vishnuraj, R., Wang, T. J., Kumar, E. A., Pullithadathil, B. Ecotoxicol. Environ. Saf. 2021, 207, 111276. https://doi.org/10.1016/j.ecoenv.2020.111276.Search in Google Scholar PubMed

26. Das, T. R., Sharma, P. K. Microchem. J. 2019, 147, 1203. https://doi.org/10.1016/j.microc.2019.04.001.Search in Google Scholar

27. Geoffrion, L. D., Medina-Cruz, D., Kusper, M., Elsaidi, S., Watanabe, F., Parajuli, P., Ponce, A., Hoang, T. B., Brintlinger, T., Webster, T. J., Guisbiers, G. Nanoscale Adv. 2021, 3, 4106. https://doi.org/10.1039/D0NA00910E.Search in Google Scholar PubMed PubMed Central

28. Hu, Q. C., Cheng, X. L., Zhang, X. F., Xu, Y. M., Gao, S., Zhao, H., Major, Z., Huo, L. H. Sensor. Actuator. B Chem. 2020, 305, 127434. https://doi.org/10.1016/j.snb.2019.127434.Search in Google Scholar

29. Rajendran, V., Mekala, R. J. Alloys Compd. 2018, 741, 1055. https://doi.org/10.1016/j.jallcom.2018.01.086.Search in Google Scholar

30. Dong, X., Cheng, X. L., Zhang, X. F., Sui, L. L., Xu, Y. M., Gao, S., Zhao, H., Huo, L. H. Sensor. Actuator. B Chem. 2018, 255, 1308. https://doi.org/10.1016/j.snb.2017.08.117.Search in Google Scholar

31. Gopinath, K., Chinnadurai, M., Devi, N. P., Bhakyaraj, K., Kumaraguru, S., Baranisri, T., Sudha, A., Zeeshan, M., Arumugam, A., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Benelli, G. J. Cluster Sci. 2017, 28, 621. https://doi.org/10.1007/s10876-016-1150-4.Search in Google Scholar

32. Safari-Amiri, M., Moriazavi-Derazkola, S., Salavatl-Ntasari, M., Ghoreishi, S. M. J. Mater. Sci. Mater. Electron. 2017, 28, 6467. https://doi.org/10.1007/s10854-017-6333-8.Search in Google Scholar

33. Chandar, N. K., Jayavel, R. J. Phys. Chem. Solid. 2012, 73, 1164. https://doi.org/10.1016/j.jpcs.2012.05.009.Search in Google Scholar

34. Liu, W. C., Qu, Y., Li, H., Ji, F. J., Dong, H. L., Wu, M. K., Chen, H., Lin, Z. D. Sensor. Actuator. B Chem. 2019, 294, 224. https://doi.org/10.1016/j.snb.2019.05.042.Search in Google Scholar

35. Qiu, F. L., Wang, Z., Chen, H. J., Ma, Y., Wu, H., Yan, L., Pei, L. Z., Fan, C. G. Curr. Nanosci. 2020, 16, 805. https://doi.org/10.2174/1573413715666191212153902.Search in Google Scholar

36. Wang, Z., Chen, H. J., Qiu, F. L., Xue, Z. Y., Yu, C. H., Wang, P. X., Cong, Q. M., Pei, L. Z., Fan, C. G., Zhang, Y. Curr. Nanosci. 2021, 17, 315. https://doi.org/10.2174/1573413716999200817120339.Search in Google Scholar

37. Wu, Y. X., Xu, M. Q., Chen, X., Yang, S. L., Wu, H. H., Pan, J., Xiong, X. Nanoscale 2016, 8, 440. https://doi.org/10.1039/C5NR05748E.Search in Google Scholar PubMed

38. Uddin, A., Muhmood, T., Guo, Z. C., Gu, J. Y., Chen, H., Jiang, F. J. Alloys Compd. 2020, 845, 156206. https://doi.org/10.1016/j.jallcom.2020.156206.Search in Google Scholar

39. He, H. Y., He, Z., Shen, Q. Int. J. Hydrogen Energy 2018, 43, 21835. https://doi.org/10.1016/j.ijhydene.2018.10.023.Search in Google Scholar

40. Zheng, J. H., Zhang, L. Chem. Eng. J. 2019, 369, 947. https://doi.org/10.1016/j.cej.2019.03.131.Search in Google Scholar

41. Luo, Y. P., Chen, J., Liu, J. W., Shao, Y., Li, X. F., Li, D. Z. Appl. Catal. B Environ. 2016, 182, 533. https://doi.org/10.1016/j.apcatb.2015.09.051.Search in Google Scholar

42. Kannan, V., Arredondo, M., Johann, F., Hesse, D., Labrugere, C., Maglione, M., Vrejoiu, I. Thin Solid Films 2013, 545, 130. https://doi.org/10.1016/j.tsf.2013.07.053.Search in Google Scholar

43. Gokhale, S., Ahmed, N., Mahamuni, S., Rao, V. J., Nigavekar, A. S., Kulkarni, S. K. Surf. Sci. 1989, 210, 85. https://doi.org/10.1016/0039-6028(89)90104-0.Search in Google Scholar

44. Shen, S. H., Zhao, L., Guo, L. J. Int. J. Hydrogen Energy 2008, 33, 4501. https://doi.org/10.1016/j.ijhydene.2008.05.043.Search in Google Scholar

45. Zhang, C., Meng, F. M., Wang, L. N. Mater. Lett. 2014, 119, 1. https://doi.org/10.1016/j.matlet.2013.12.087.Search in Google Scholar

46. Liu, Z. Y., Wang, Q. Y., Rong, W. Q., Jin, R. C., Cui, Y. M., Gao, S. M. Separ. Purif. Technol. 2018, 200, 191. https://doi.org/10.1016/j.seppur.2018.02.034.Search in Google Scholar

47. Yayapao, O., Thongtem, T., Phuruangrat, A., Thongtem, S. J. Alloys Compd. 2011, 509, 2294. https://doi.org/10.1016/j.jallcom.2010.10.204.Search in Google Scholar

48. Zhang, P., Hua, X., Teng, X. X., Liu, D. S., Qin, Z. H., Ding, S. M. Mater. Lett. 2016, 185, 275. https://doi.org/10.1016/j.matlet.2016.08.148.Search in Google Scholar

49. Li, N., Huang, W. X., Shi, Q. W., Zhang, Y. B., Song, L. W. Ceram. Int. 2013, 39, 6199. https://doi.org/10.1016/j.ceramint.2013.01.039.Search in Google Scholar

50. Pan, C. S., Zhang, D. S., Shi, L. Y. J. Solid State Chem. 2008, 181, 1298. https://doi.org/10.1016/j.jssc.2008.02.011.Search in Google Scholar

51. Rasouli, H., Naji, L. L., Hosseini, M. G. New J. Chem. 2018, 42, 12104. https://doi.org/10.1039/C8NJ00936H.Search in Google Scholar

52. Pei, L. Z., Ma, Y., Qiu, F. L., Lin, F. F., Fan, C. G., Ling, X. Z. Curr. Anal. Chem. 2020, 16, 493. https://doi.org/10.2174/1573411014666181115125050.Search in Google Scholar

53. Unmüssig, T., Weltin, A., Urban, S., Daubinger, P., Urban, G. A., Kieninger, J. J. Electroanal. Chem. 2018, 816, 215. https://doi.org/10.1016/j.jelechem.2018.03.061.Search in Google Scholar

54. Li, H. M., Li, T., Wang, E. K. Talanta 1995, 42, 885. https://doi.org/10.1016/0039-9140(95)01502-3.Search in Google Scholar PubMed

55. Hussain, M., Khaliq, N., Khan, A. A., Khan, M., Ali, G., Maqbool, M. Physica E 2021, 128, 114541. https://doi.org/10.1016/j.physe.2020.114541.Search in Google Scholar

56. Pei, L. Z., Cai, Z. Y., Pei, Y. Q., Xie, Y. K., Fan, C. G., Fu, D. G. Russ. J. Electrochem. 2014, 50, 458. https://doi.org/10.1134/S1023193513110098.Search in Google Scholar

57. Wu, S., Lan, X. Q., Huang, F. F., Luo, Z. Z., Ju, H. X., Meng, C. G., Duan, C. Y. Biosens. Bioelectron. 2012, 32, 293. https://doi.org/10.1016/j.bios.2011.12.006.Search in Google Scholar PubMed

58. Bai, Y. H., Xu, J. J., Chen, H. Y. Biosens. Bioelectron. 2009, 24, 2985. https://doi.org/10.1016/j.bios.2009.03.008.Search in Google Scholar PubMed

59. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Li, D. K., Zhang, Q. F. J. Mater. Res. 2012, 27, 2391. https://doi.org/10.1557/jmr.2012.254.Search in Google Scholar

60. Kurniawan, A., Kurniawan, F., Gunawan, F., Chou, S. H., Wang, M. J. Electrochim. Acta. 2019, 293, 318. https://doi.org/10.1016/j.electacta.2018.08.140.Search in Google Scholar

61. Kumar, D. R., Baynosa, M. L., Shim, J. J. Sensor. Actuat. B: Chem 2019, 293, 107. https://doi.org/10.1016/j.snb.2019.04.122.Search in Google Scholar

62. Atacan, K. J. Alloys Compd. 2019, 791, 391. https://doi.org/10.1016/j.jallcom.2019.03.303.Search in Google Scholar

63. Deng, C. Y., Chen, J. H., Chen, X. L., Wang, M. D., Nie, Z., Yao, S. Z. Electrochim. Acta 2009, 54, 3298. https://doi.org/10.1016/j.electacta.2008.12.045.Search in Google Scholar

64. Spataru, N., Sarada, B. V., Papa, E., Tryk, D. A., Fujishima, A. Anal. Chem. 2001, 73, 514. https://doi.org/10.1021/ac000220v.Search in Google Scholar PubMed

65. Tang, X. F., Liu, Y., Hou, H. Q., You, T. Y. Talanta 2010, 80, 2182. https://doi.org/10.1016/j.talanta.2009.11.027.Search in Google Scholar PubMed

66. Salimi, A., Hallaj, R. Talanta 2005, 66, 967. https://doi.org/10.1016/j.talanta.2004.12.040.Search in Google Scholar PubMed

67. Fei, S. D., Chen, J. H., Yao, S. Z., Deng, G. H., He, D. L., Kuang, Y. F. Anal. Biochem. 2005, 339, 29. https://doi.org/10.1016/j.ab.2005.01.002.Search in Google Scholar PubMed

68. Lai, Y. T., Ganguly, A., Chen, L. C., Chen, K. H. Biosens. Bioelectron. 2010, 26, 1688. https://doi.org/10.1016/j.bios.2010.07.005.Search in Google Scholar PubMed

69. Yang, S. L., Li, G., Xia, N., Wang, Y. X., Liu, P. P., Qu, L. B. J. Alloys Compd. 2021, 853, 157077. https://doi.org/10.1016/j.jallcom.2020.157077.Search in Google Scholar

70. Wang, Y. L., Peng, W., Liu, L., Gao, F., Li, M. G. Electrochim. Acta 2012, 70, 93. https://doi.org/10.1016/j.electacta.2012.03.106.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijmr-2022-0338).


Received: 2022-07-25
Accepted: 2022-11-22
Published Online: 2023-02-16
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0338/pdf
Scroll to top button