Abstract
Bi2O3/Dy2O3 nanoflakes with triclinic Bi2O3 and cubic Dy2O3 phases were synthesized by a hexadecyl trimethyl ammonium bromide (CTAB)-assisted hydrothermal route. The Bi2O3/Dy2O3 nanoflakes were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, electron microscopy and electrochemical impedance spectroscopy. The size of the Bi2O3/Dy2O3 nanoflakes with curled surface is about 2 μm and thickness is about 25 nm. X-ray photoelectron spectroscopy confirms the chemical composition of the Bi2O3/Dy2O3 nanoflakes. The formation process of the Bi2O3/Dy2O3 nanoflakes was investigated by controlling the CTAB concentration, reaction temperature and reaction time. The formation of the Bi2O3/Dy2O3 nanoflakes depends on CTAB. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy demonstrate good electro-catalytic activity of the Bi2O3/Dy2O3 nanoflakes towards L-cysteine with a pair of quasi-reversible CV peaks at +0.01 V and –0.68 V, respectively. Bi2O3/Dy2O3 nanoflakes modified electrode detects L-cysteine linearly over a concentration ranging from 0.001 to 2 mM with a detection limit of 0.32 μM. The proposed nanocomposites modified electrode possesses good reproducibility and stability which can be used as a promising candidate for L-cysteine detection.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Natural Science Foundation of Anhui Province of P. R. China (2008085ME172), National Scholarship Fund of China Scholarship Council (CSC) (202008340046) and Student Innovation and Entrepreneurship Training Program of P. R. China (202210360026).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarodi, A., Fakhari, A. R. Biosens. Bioelectron. 2013, 42, 426. https://doi.org/10.1016/j.bios.2012.09.062.Search in Google Scholar PubMed
2. Gupta, V. K., Shamsadin-Azad, Z., Cheraghi, S., Agarwai, S., Taher, M. A., Karimi, F. Int. J. Electrochem. Sci. 2018, 13, 4309. https://doi.org/10.20964/2018.05.53.Search in Google Scholar
3. Nie, L. H., Ma, H. M., Sun, M., Li, X. H., Su, M. H., Liang, S. C. Talanta 2003, 59, 959. https://doi.org/10.1016/s0039-9140(02)00649-5.Search in Google Scholar
4. Rani, B. K., John, S. A. Biosens. Bioelectron. 2016, 83, 237. https://doi.org/10.1016/j.bios.2016.04.013.Search in Google Scholar PubMed
5. Tu, C. Q., Wen, X. R. E3S Web. Conf. 2021, 245, 03023. https://doi.org/10.1051/e3sconf/202124503023.Search in Google Scholar
6. Gavrilova, T. B., Kiselev, A. V., Kulikov, N. S., Vlasenko, E. V. Chromatographia 1986, 22, 59. https://doi.org/10.1007/BF02257299.Search in Google Scholar
7. Kuśmierek, K., Głowacki, R., Bald, E. Anal. Bioanal. Chem. 2006, 385, 855. https://doi.org/10.1007/s00216-006-0454-x.Search in Google Scholar PubMed
8. Yang, S. M., Zheng, Y., Zhang, X. R., Ding, S. Q., Li, L. L., Zha, W. L. J. Solid State Electrochem. 2016, 20, 2037. https://doi.org/10.1007/s10008-016-3213-8.Search in Google Scholar
9. Pei, L. Z., Wei, T., Lin, N., Cai, Z. Y., Fan, C. G., Yang, Z. J. Electrochem. Soc. 2016, 163, H1. https://doi.org/110.1149/2.0041602jes.10.1149/2.0041602jesSearch in Google Scholar
10. Pei, L. Z., Wei, T., Lin, N., Zhang, H., Fan, C. G. Russ. J. Electrochem. 2018, 54, 84. https://doi.org/10.1134/s102319351711012x.Search in Google Scholar
11. Upan, J., Lerdsri, J., Soongsong, J., Mool-am-kha, P., Sridara, T., Reanpang, P., Jakmunee, J. Analyst 2022, 147, 2170. https://doi.org/10.1039/D2AN00346E.Search in Google Scholar PubMed
12. Jean, C. N., Bai, J., Qi, B., Guo, L. P. Anal. Biochem. 2009, 386, 79. https://doi.org/10.1016/j.ab.2008.11.041.Search in Google Scholar PubMed
13. Razmi, H., Habibi, E. Electroanalysis 2009, 21, 867. https://doi.org/10.1002/elan.200804487.Search in Google Scholar
14. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Yu, H. Y. CrystEngComm 2013, 15, 1729. https://doi.org/10.1039/c2ce26592c.Search in Google Scholar
15. Su, W. Y., Cheng, S. H. Electrochem. Commun. 2008, 10, 899. https://doi.org/10.1016/j.elecom.2008.04.013.Search in Google Scholar
16. Zhou, M., Ding, J., Guo, L. P., Shang, Q. K. Anal. Chem. 2007, 79, 5328. https://doi.org/0.1021/ac0703707.10.1021/ac0703707Search in Google Scholar PubMed
17. Ziyatdinova, G., Kozlova, E., Budnikov, H. Electrochim. Acta 2018, 270, 369. https://doi.org/10.1016/j.electacta.2018.03.102.Search in Google Scholar
18. Varodi, C., Pogacean, F., Ciorita, A., Pana, O., Leostean, C., Cozar, B., Radu, T., Coros, M., Staden, R. I. S., Pruneanu, S. M. Chemosensors 2021, 9, 146. https://doi.org/10.3390/chemosensors9060146.Search in Google Scholar
19. Atapour, M., Amoabediny, G., Ahmadzadeh-Raji, M. RSC Adv. 2019, 9, 8882. https://doi.org/10.1039/C8RA09659G.Search in Google Scholar PubMed PubMed Central
20. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M., Jayavel, R. Inorg. Chem. Commun. 2020, 113, 107793. https://doi.org/10.1016/j.inoche.2020.107793.Search in Google Scholar
21. Manibalan, G., Murugadoss, G., Thangamuthu, R., Kumar, M. R., Kumar, R. M. J. Alloys Compd. 2019, 792, 1151. https://doi.org/10.1016/j.jallcom.2019.04.127.Search in Google Scholar
22. Ge, S. G., Yan, M., Lu, J. J., Zhang, M., Yu, F., Yu, J. H., Song, X. R., Yu, S. L. Biosens. Bioelectron. 2012, 31, 49. https://doi.org/10.1016/j.bios.2011.09.038.Search in Google Scholar PubMed
23. Farsi, H., Moghminia, S., Roohi, A., Hosseini, S. A. Electrochim. Acta 2014, 148, 93. https://doi.org/10.1016/j.electacta.2014.10.040.10.1016/j.electacta.2014.10.040Search in Google Scholar
24. Yamuna, A., Sundaresan, P., Chen, S. M. Ultrason. Sonochem. 2020, 64, 105014. https://doi.org/10.1016/j.ultsonch.2020.105014.Search in Google Scholar PubMed
25. Kokulnathan, T., Vishnuraj, R., Wang, T. J., Kumar, E. A., Pullithadathil, B. Ecotoxicol. Environ. Saf. 2021, 207, 111276. https://doi.org/10.1016/j.ecoenv.2020.111276.Search in Google Scholar PubMed
26. Das, T. R., Sharma, P. K. Microchem. J. 2019, 147, 1203. https://doi.org/10.1016/j.microc.2019.04.001.Search in Google Scholar
27. Geoffrion, L. D., Medina-Cruz, D., Kusper, M., Elsaidi, S., Watanabe, F., Parajuli, P., Ponce, A., Hoang, T. B., Brintlinger, T., Webster, T. J., Guisbiers, G. Nanoscale Adv. 2021, 3, 4106. https://doi.org/10.1039/D0NA00910E.Search in Google Scholar PubMed PubMed Central
28. Hu, Q. C., Cheng, X. L., Zhang, X. F., Xu, Y. M., Gao, S., Zhao, H., Major, Z., Huo, L. H. Sensor. Actuator. B Chem. 2020, 305, 127434. https://doi.org/10.1016/j.snb.2019.127434.Search in Google Scholar
29. Rajendran, V., Mekala, R. J. Alloys Compd. 2018, 741, 1055. https://doi.org/10.1016/j.jallcom.2018.01.086.Search in Google Scholar
30. Dong, X., Cheng, X. L., Zhang, X. F., Sui, L. L., Xu, Y. M., Gao, S., Zhao, H., Huo, L. H. Sensor. Actuator. B Chem. 2018, 255, 1308. https://doi.org/10.1016/j.snb.2017.08.117.Search in Google Scholar
31. Gopinath, K., Chinnadurai, M., Devi, N. P., Bhakyaraj, K., Kumaraguru, S., Baranisri, T., Sudha, A., Zeeshan, M., Arumugam, A., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Benelli, G. J. Cluster Sci. 2017, 28, 621. https://doi.org/10.1007/s10876-016-1150-4.Search in Google Scholar
32. Safari-Amiri, M., Moriazavi-Derazkola, S., Salavatl-Ntasari, M., Ghoreishi, S. M. J. Mater. Sci. Mater. Electron. 2017, 28, 6467. https://doi.org/10.1007/s10854-017-6333-8.Search in Google Scholar
33. Chandar, N. K., Jayavel, R. J. Phys. Chem. Solid. 2012, 73, 1164. https://doi.org/10.1016/j.jpcs.2012.05.009.Search in Google Scholar
34. Liu, W. C., Qu, Y., Li, H., Ji, F. J., Dong, H. L., Wu, M. K., Chen, H., Lin, Z. D. Sensor. Actuator. B Chem. 2019, 294, 224. https://doi.org/10.1016/j.snb.2019.05.042.Search in Google Scholar
35. Qiu, F. L., Wang, Z., Chen, H. J., Ma, Y., Wu, H., Yan, L., Pei, L. Z., Fan, C. G. Curr. Nanosci. 2020, 16, 805. https://doi.org/10.2174/1573413715666191212153902.Search in Google Scholar
36. Wang, Z., Chen, H. J., Qiu, F. L., Xue, Z. Y., Yu, C. H., Wang, P. X., Cong, Q. M., Pei, L. Z., Fan, C. G., Zhang, Y. Curr. Nanosci. 2021, 17, 315. https://doi.org/10.2174/1573413716999200817120339.Search in Google Scholar
37. Wu, Y. X., Xu, M. Q., Chen, X., Yang, S. L., Wu, H. H., Pan, J., Xiong, X. Nanoscale 2016, 8, 440. https://doi.org/10.1039/C5NR05748E.Search in Google Scholar PubMed
38. Uddin, A., Muhmood, T., Guo, Z. C., Gu, J. Y., Chen, H., Jiang, F. J. Alloys Compd. 2020, 845, 156206. https://doi.org/10.1016/j.jallcom.2020.156206.Search in Google Scholar
39. He, H. Y., He, Z., Shen, Q. Int. J. Hydrogen Energy 2018, 43, 21835. https://doi.org/10.1016/j.ijhydene.2018.10.023.Search in Google Scholar
40. Zheng, J. H., Zhang, L. Chem. Eng. J. 2019, 369, 947. https://doi.org/10.1016/j.cej.2019.03.131.Search in Google Scholar
41. Luo, Y. P., Chen, J., Liu, J. W., Shao, Y., Li, X. F., Li, D. Z. Appl. Catal. B Environ. 2016, 182, 533. https://doi.org/10.1016/j.apcatb.2015.09.051.Search in Google Scholar
42. Kannan, V., Arredondo, M., Johann, F., Hesse, D., Labrugere, C., Maglione, M., Vrejoiu, I. Thin Solid Films 2013, 545, 130. https://doi.org/10.1016/j.tsf.2013.07.053.Search in Google Scholar
43. Gokhale, S., Ahmed, N., Mahamuni, S., Rao, V. J., Nigavekar, A. S., Kulkarni, S. K. Surf. Sci. 1989, 210, 85. https://doi.org/10.1016/0039-6028(89)90104-0.Search in Google Scholar
44. Shen, S. H., Zhao, L., Guo, L. J. Int. J. Hydrogen Energy 2008, 33, 4501. https://doi.org/10.1016/j.ijhydene.2008.05.043.Search in Google Scholar
45. Zhang, C., Meng, F. M., Wang, L. N. Mater. Lett. 2014, 119, 1. https://doi.org/10.1016/j.matlet.2013.12.087.Search in Google Scholar
46. Liu, Z. Y., Wang, Q. Y., Rong, W. Q., Jin, R. C., Cui, Y. M., Gao, S. M. Separ. Purif. Technol. 2018, 200, 191. https://doi.org/10.1016/j.seppur.2018.02.034.Search in Google Scholar
47. Yayapao, O., Thongtem, T., Phuruangrat, A., Thongtem, S. J. Alloys Compd. 2011, 509, 2294. https://doi.org/10.1016/j.jallcom.2010.10.204.Search in Google Scholar
48. Zhang, P., Hua, X., Teng, X. X., Liu, D. S., Qin, Z. H., Ding, S. M. Mater. Lett. 2016, 185, 275. https://doi.org/10.1016/j.matlet.2016.08.148.Search in Google Scholar
49. Li, N., Huang, W. X., Shi, Q. W., Zhang, Y. B., Song, L. W. Ceram. Int. 2013, 39, 6199. https://doi.org/10.1016/j.ceramint.2013.01.039.Search in Google Scholar
50. Pan, C. S., Zhang, D. S., Shi, L. Y. J. Solid State Chem. 2008, 181, 1298. https://doi.org/10.1016/j.jssc.2008.02.011.Search in Google Scholar
51. Rasouli, H., Naji, L. L., Hosseini, M. G. New J. Chem. 2018, 42, 12104. https://doi.org/10.1039/C8NJ00936H.Search in Google Scholar
52. Pei, L. Z., Ma, Y., Qiu, F. L., Lin, F. F., Fan, C. G., Ling, X. Z. Curr. Anal. Chem. 2020, 16, 493. https://doi.org/10.2174/1573411014666181115125050.Search in Google Scholar
53. Unmüssig, T., Weltin, A., Urban, S., Daubinger, P., Urban, G. A., Kieninger, J. J. Electroanal. Chem. 2018, 816, 215. https://doi.org/10.1016/j.jelechem.2018.03.061.Search in Google Scholar
54. Li, H. M., Li, T., Wang, E. K. Talanta 1995, 42, 885. https://doi.org/10.1016/0039-9140(95)01502-3.Search in Google Scholar PubMed
55. Hussain, M., Khaliq, N., Khan, A. A., Khan, M., Ali, G., Maqbool, M. Physica E 2021, 128, 114541. https://doi.org/10.1016/j.physe.2020.114541.Search in Google Scholar
56. Pei, L. Z., Cai, Z. Y., Pei, Y. Q., Xie, Y. K., Fan, C. G., Fu, D. G. Russ. J. Electrochem. 2014, 50, 458. https://doi.org/10.1134/S1023193513110098.Search in Google Scholar
57. Wu, S., Lan, X. Q., Huang, F. F., Luo, Z. Z., Ju, H. X., Meng, C. G., Duan, C. Y. Biosens. Bioelectron. 2012, 32, 293. https://doi.org/10.1016/j.bios.2011.12.006.Search in Google Scholar PubMed
58. Bai, Y. H., Xu, J. J., Chen, H. Y. Biosens. Bioelectron. 2009, 24, 2985. https://doi.org/10.1016/j.bios.2009.03.008.Search in Google Scholar PubMed
59. Pei, L. Z., Pei, Y. Q., Xie, Y. K., Fan, C. G., Li, D. K., Zhang, Q. F. J. Mater. Res. 2012, 27, 2391. https://doi.org/10.1557/jmr.2012.254.Search in Google Scholar
60. Kurniawan, A., Kurniawan, F., Gunawan, F., Chou, S. H., Wang, M. J. Electrochim. Acta. 2019, 293, 318. https://doi.org/10.1016/j.electacta.2018.08.140.Search in Google Scholar
61. Kumar, D. R., Baynosa, M. L., Shim, J. J. Sensor. Actuat. B: Chem 2019, 293, 107. https://doi.org/10.1016/j.snb.2019.04.122.Search in Google Scholar
62. Atacan, K. J. Alloys Compd. 2019, 791, 391. https://doi.org/10.1016/j.jallcom.2019.03.303.Search in Google Scholar
63. Deng, C. Y., Chen, J. H., Chen, X. L., Wang, M. D., Nie, Z., Yao, S. Z. Electrochim. Acta 2009, 54, 3298. https://doi.org/10.1016/j.electacta.2008.12.045.Search in Google Scholar
64. Spataru, N., Sarada, B. V., Papa, E., Tryk, D. A., Fujishima, A. Anal. Chem. 2001, 73, 514. https://doi.org/10.1021/ac000220v.Search in Google Scholar PubMed
65. Tang, X. F., Liu, Y., Hou, H. Q., You, T. Y. Talanta 2010, 80, 2182. https://doi.org/10.1016/j.talanta.2009.11.027.Search in Google Scholar PubMed
66. Salimi, A., Hallaj, R. Talanta 2005, 66, 967. https://doi.org/10.1016/j.talanta.2004.12.040.Search in Google Scholar PubMed
67. Fei, S. D., Chen, J. H., Yao, S. Z., Deng, G. H., He, D. L., Kuang, Y. F. Anal. Biochem. 2005, 339, 29. https://doi.org/10.1016/j.ab.2005.01.002.Search in Google Scholar PubMed
68. Lai, Y. T., Ganguly, A., Chen, L. C., Chen, K. H. Biosens. Bioelectron. 2010, 26, 1688. https://doi.org/10.1016/j.bios.2010.07.005.Search in Google Scholar PubMed
69. Yang, S. L., Li, G., Xia, N., Wang, Y. X., Liu, P. P., Qu, L. B. J. Alloys Compd. 2021, 853, 157077. https://doi.org/10.1016/j.jallcom.2020.157077.Search in Google Scholar
70. Wang, Y. L., Peng, W., Liu, L., Gao, F., Li, M. G. Electrochim. Acta 2012, 70, 93. https://doi.org/10.1016/j.electacta.2012.03.106.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ijmr-2022-0338).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde