Home Ultraviolet-B radiation from Gd (III) doped hardystonite
Article
Licensed
Unlicensed Requires Authentication

Ultraviolet-B radiation from Gd (III) doped hardystonite

  • Vijay Singh EMAIL logo , Ch. B Annapurna Devi , A. S. Rao and Ji Bong Joo
Published/Copyright: August 18, 2023
Become an author with De Gruyter Brill

Abstract

Trivalent gadolinium (Gd3+)-doped calcium zinc silicate (Ca2ZnSi2O7/hardystonite) with a molar composition of Ca2−xZnSi2O7:xGd3+ (x = 0.09 mol) was produced using a sol–gel system. The hardystonite was characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The X-ray diffraction study revealed that the prepared sample contained a tetragonal phase of Ca2ZnSi2O7. The vibrational structures of the sample were studied using Fourier transform infrared spectroscopy measurements. The photoluminescence emission spectrum of the Ca1.91ZnSi2O7:0.09Gd3+ phosphor narrow band was optimized at 312 nm in the Ultraviolet-B region under excitation at 273 nm wavelength. Electron paramagnetic resonance study authenticates the presence of gadolinium (Gd) ions within the trivalent state in the Ca1.91ZnSi2O7:0.09Gd3+ host.


Corresponding author: Vijay Singh, Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This paper was supported by the KU Research Professor Program of Konkuk University. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1092509).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gurav, J. L., Rao, A. V., Rao, A. P., Nadargi, D. Y., Bhagat, S. D. J. Alloys Compd. 2009, 476, 397. https://doi.org/10.1016/j.jallcom.2008.09.029.Search in Google Scholar

2. Lv, W., Guo, N., Jia, Y., Zhao, Q., You, H. Opt. Mater. 2013, 35, 1013. https://doi.org/10.1016/j.optmat.2012.12.014.Search in Google Scholar

3. Latifi, N., Eisazadeh, A., Marto, A. Environ. Earth Sci. 2014, 72, 91. https://doi.org/10.1007/s12665-013-2939-1.Search in Google Scholar

4. Singh, V., Annapurna Devi, Ch. B., Kaur, S., Rao, A. S., Singh, N. Optik 2021, 242, 167268. https://doi.org/10.1016/j.ijleo.2021.167268.Search in Google Scholar

5. Zaarei, D., Sarabi, A. A., Sharif, F., Kassiriha, S. M. J. Coat. Technol. Res. 2008, 5, 241. https://doi.org/10.1007/s11998-007-9065-5.Search in Google Scholar

6. Jung, K. Y., Kim, J. H., Kang, Y. C. J. Lumin. 2009, 129, 615. https://doi.org/10.1016/j.jlumin.2009.01.001.Search in Google Scholar

7. Singh, V., Annapurna Devi, Ch. B., Rupa Venkateswara Rao, B., Rao, A. S. J. Electron. Mater. 2023, 52, 50. https://doi.org/10.1007/s11664-022-10035-9.Search in Google Scholar

8. Das, S., Manam, J., Sharma, S. K. New J. Chem. 2017, 41, 5934. https://doi.org/10.1039/C7NJ00209B.Search in Google Scholar

9. Singh, V., Annapurna Devi, Ch. B., Kaur, S., Rao, A. S., Singh, N. Optik 2021, 243, 167322. https://doi.org/10.1016/j.ijleo.2021.167322.Search in Google Scholar

10. Gong, Y., Wang, Y., Jiang, Z., Xu, X., Li, Y. Mater. Res. Bull. 2009, 44, 1916. https://doi.org/10.1016/j.materresbull.2009.05.003.Search in Google Scholar

11. Sahu, I. P., Bisen, D. P., Brahme, N. Luminescence 2015, 30, 526. https://doi.org/10.1002/bio.2771.Search in Google Scholar PubMed

12. Zhang, H. W., Yamada, H., Terasaki, N., Xu, C. N. J. Electrochem. Soc. 2008, 155, J55. https://doi.org/10.1149/1.2816215.Search in Google Scholar

13. Qiuhonga, Z., Jingb, W., Haiyonga, N., Linglia, W. Rare Met. 2012, 31, 35. https://doi.org/10.1007/s12598-012-0458-y.Search in Google Scholar

14. Zhang, M., Wang, J., Ding, W., Zhang, Q. Opt. Mater. 2007, 30, 571. https://doi.org/10.1016/j.optmat.2007.01.008.Search in Google Scholar

15. Kodama, N., Tanii, Y., Yamaga, M. J. Lumin. 2000, 87-89, 1076. https://doi.org/10.1016/S0022-2313(99)00543-8.Search in Google Scholar

16. Tiwari, G., Brahme, N., Sharma, R., Bisen, D. P., Sao, S. K., Dhoble, S. J. RSC Adv. 2016, 6, 49317. https://doi.org/10.1039/C6RA04913C.Search in Google Scholar

17. Jaroszewski, K., Głuchowski, P., Chrunik, M., Jastrząb, R., Majchrowski, A., Kasprowicz, D. Opt. Mater. 2018, 75, 13. https://doi.org/10.1016/j.optmat.2017.10.013.Search in Google Scholar

18. Ma, J., Huang, B. X., Zhao, X. C., Hao, X. H., Wang, C. Z. Mater. Lett. 2019, 236, 566. https://doi.org/10.1016/j.matlet.2018.11.017.Search in Google Scholar

19. Singh, V., Kaur, S., Annapurna Devi, Ch. B., Rao, A. S., Joo, Ji. B. Optik 2022, 266, 169553. https://doi.org/10.1016/j.ijleo.2022.169553.Search in Google Scholar

20. Mohammadi, H., Hafezi, M., Nezafati, N., Heasarki, S., Nadernezhad, A., Ghazanfari, S. M. H., Sepantafar, M. J. Ceram. Sci. Technol. 2014, 5, 1. https://doi.org/10.4416/JCST2013-00027.Search in Google Scholar

21. Wu, C., Ramaswamy, Y., Soeparto, A., Zreiqat, H. J. Biomed. Mater. Res. A 2008, 86, 402. https://doi.org/10.1002/jbm.a.31623.Search in Google Scholar PubMed

22. Wu, C., Ramaswamy, Y., Chang, J., Woods, J., Chen, Y., Zreiqat, H. J. Biomed. Mater. Res. B 2008, 87B, 346. https://doi.org/10.1002/jbm.b.31109.Search in Google Scholar PubMed

23. Kamioka, H., Yamaguchi, T., Hirano, M., Kamiya, T., Hosono, H. J. Lumin. 2007, 122–123, 339. https://doi.org/10.1016/j.jlumin.2006.01.171.Search in Google Scholar

24. Jiang, L., Xiao, S., Yang, X., Zhang, X., Liu, X., Zhou, B., Jin, X. Mater. Sci. Eng. B 2013, 178, 123. https://doi.org/10.1016/j.jlumin.2006.01.171.Search in Google Scholar

25. Mondal, K., Manam, J. J. Lumin. 2018, 195, 259. https://doi.org/10.1016/j.jlumin.2017.11.028.Search in Google Scholar

26. Neeraj, S., Kijima, N., Cheetham, A. K. Solid State Commun. 2004, 131, 65. https://doi.org/10.1016/j.ssc.2004.03.050.Search in Google Scholar

27. Zhang, X., Li, W., Jang, K. H., Seo, H. J. Curr. Appl. Phys. 2012, 12, 299. https://doi.org/10.1016/j.cap.2011.06.024.Search in Google Scholar

28. Singh, V., Annapurna Devi, Ch. B., Rao, B. R. V., Rao, A. S., Singh, N., Mistry, B. M. Optik 2021, 226, 165932. https://doi.org/10.1016/j.ijleo.2020.165932.Search in Google Scholar

29. Chauhan, A. O., Gawande, A. B., Omanwar, S. K. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1023. https://doi.org/10.1007/s10904-016-0415-6.Search in Google Scholar

30. Singh, V., Kokate, S., Natarajan, V. Optik 2020, 204, 164016. https://doi.org/10.1016/j.ijleo.2019.164016.Search in Google Scholar

31. Singh, V., Singh, N., Pathak, M. S., Natarajan, V., Jadhav, N. A. Optik 2019, 176, 650. https://doi.org/10.1016/j.ijleo.2018.09.021.Search in Google Scholar

32. Chen, F., Bu, W., Zhang, S., Liu, X., Liu, J., Xing, H., Xiao, Q., Zhou, L., Peng, W., Wang, L., Shi, J. Adv. Funct. Mater. 2011, 21, 4285. https://doi.org/10.1002/adfm.201101663.Search in Google Scholar

33. Yang, L. W., Zhang, Y. Y., Li, J. J., Li, Y., Zhong, J. X., Chu, P. K. Nanoscale 2010, 2, 2805. https://doi.org/10.1039/C0NR00326C.Search in Google Scholar PubMed

34. Chen, G., Liang, H., Liu, H., Somesfalean, G., Zhang, Z. Opt. Express 2009, 17, 16366. https://doi.org/10.1364/OE.17.016366.Search in Google Scholar PubMed

35. Lee, S. H., Kim, B. H., Na, H. B., Hyeon, T. Nanomed. Nanotechnol. 2014, 6, 196. https://doi.org/10.1002/wnan.1243.Search in Google Scholar PubMed

36. Xiao, Y.-D., Paudel, R., Liu, J., Ma, C., Zhang, Z.-S., Zhou, S.-K. Int. J. Mol. Med. 2016, 38, 1319. https://doi.org/10.3892/ijmm.2016.2744.Search in Google Scholar PubMed

37. Yan, G.-P., Robinson, L., Hogg, P. Radiography 2007, 13, e5. https://doi.org/10.1016/j.radi.2006.07.005.Search in Google Scholar

38. Singh, V., Annapurna Devi, Ch. B., Rao, A. S., Rao, J. L. Optik 2020, 208, 163632. https://doi.org/10.1016/j.ijleo.2019.163632.Search in Google Scholar

39. Singh, V., Borkotoky, S., Murali, A., Rao, J. L., Gundu Rao, T. K., Dhoble, S. J. Spectrochim. Acta Part A 2015, 139, 1. https://doi.org/10.1016/j.saa.2014.11.097.Search in Google Scholar PubMed

40. Prokhorov, A. D., Prokhorov, A. A., Chernush, L. F., Minyakaev, R., Dyakonov, V. P., Szymczak, H. Phys. Status Solidi B 2014, 251, 201. https://doi.org/10.1002/pssb.201350026.Search in Google Scholar

41. Hu, Q., Suzuki, H., Gao, H., Araki, H., Yang, W., Noda, T. Chem. Phys. Lett. 2003, 378, 299. https://doi.org/10.1016/j.cplett.2003.07.015.Search in Google Scholar

42. Tomozawa, M., Hong, J. W., Ryu, S. R. J. Non-Cryst. Solids 2005, 351, 12. https://doi.org/10.1016/j.jnoncrysol.2005.01.017.Search in Google Scholar

43. Furukawa, T., Fox, K. E., Whited, W. B. J. Chem. Phys. 1981, 75, 3226. https://doi.org/10.1063/1.44247.Search in Google Scholar

44. Sava, B. A., Vişan, T. U.P.B. Sci. Bull. Series B 2007, 69, 11–24.Search in Google Scholar

45. GaluskIna, I. О., lazIc, B., Armbruster, T., Galuskin, E. V., Gazeev, V. M., Zadov, A. E., Pertsev, N. N., Jeżak, L., Wrzalik, R., Gurbanov, A. G. Am. Mineral. 2009, 94, 1361. https://doi.org/10.2138/am.2009.3256.Search in Google Scholar

46. Schild, C., Wokaun, A., Baiker, A. J. Mol. Catal. 1990, 63, 223. https://doi.org/10.1016/0304-5102(90)85147-A.Search in Google Scholar

47. Rege, S. U., Yang, R. T. Chem. Eng. Sci. 2001, 56, 3781. https://doi.org/10.1016/S0009-2509(01)00095-1.Search in Google Scholar

48. Mokoena, P. P. Narrowband Ultraviolet B Emission from Gadolinium and Praseodymium Co-Activated Calcium Phosphate Phosphors for Phototherapy Lamps. MS Thesis, University of the Free State, South Africa, 2014. http://hdl.handle.net/11660/2187.Search in Google Scholar

49. Gandhi, Y., Rajanikanth, P., Rao, M. S., Kumar, V. R., Veeraiah, N., Piasecki, M. Opt. Mater. 2016, 57, 39. https://doi.org/10.1016/j.optmat.2016.04.015.Search in Google Scholar

50. Ramteke, D. D., Gedam, R. S. J. Rare Earths 2014, 32, 389. https://doi.org/10.1016/S1002-0721(14)60082-X.Search in Google Scholar

51. Padlyak, B. V., Drzewiecki, A., Padlyak, T. B., Adamiv, V. T., Teslyuk, I. M. Opt. Mater. 2018, 79, 302. https://doi.org/10.1016/j.optmat.2018.03.050.Search in Google Scholar

52. Chauhan, A. O., Gawande, A. B., Omanwar, S. K. Optik 2016, 127, 6647. https://doi.org/10.1016/j.ijleo.2016.04.131.Search in Google Scholar

53. Mohapatra, M., Rajeswari, B., Hon, N. S., Kadam, R. M., Keskar, M. S., Natarajan, V. Ceram. Int. 2015, 41, 8761. https://doi.org/10.1016/j.ceramint.2015.03.099.Search in Google Scholar

54. Tang, C., Liu, S., Liu, L., DanChen, P. J. Lumin. 2015, 160, 317. https://doi.org/10.1016/j.jlumin.2014.12.033.Search in Google Scholar

55. Weinstein, G. D., Gottlieb, A. B. Therapy of Moderate-To-Severe-Psoriasis, 2nd ed.; CRC Press: Boca Raton, Florida, 2003.10.1201/b14220Search in Google Scholar

56. Sonekar, R. P., Omanwar, S. K., Moharil, S. V., Dhopte, S. M., Muthal, P. L., Kondawar, V. K. Opt. Mater. 2007, 30, 622. https://doi.org/10.1016/j.optmat.2007.02.016.Search in Google Scholar

57. Rao, A. S., Rao, J. L., Ravi Kanth Kumar, V. V., Jayasankar, C. K., Lakshman, S. V. J. Phys. Status Solidi B 1992, 174, 183. https://doi.org/10.1002/pssb.2221740118.Search in Google Scholar

58. Petersen, M., Hafner, J., Marsman, M. J. Phys. Condens Matter. 2006, 18, 7021. https://doi.org/10.1088/0953-8984/18/30/007.Search in Google Scholar

59. Brodbeck, C. M., Iton, L. E. J. Chem. Phys. 1985, 83, 4285. https://doi.org/10.1063/1.445922.Search in Google Scholar

60. Griscom, D. L. J. Non-Cryst. Solids 1980, 40, 211. https://doi.org/10.1016/0022-3093(80)90105-2.Search in Google Scholar

61. Iton, L. E., Brodbeck, C. M., Suib, S. L., Stucky, G. D. J. Chem. Phys. 1983, 79, 1185. https://doi.org/10.1063/1.445922.Search in Google Scholar

62. Singh, V., Sivaramaiah, G., Rao, J. L., Kumaran, R. S., Singh, P. K., Kim, T. S., Kim, L. K. J. Mater. Sci. Mater. Electron. 2015, 26, 5195. https://doi.org/10.1007/s10854-015-3051-y.Search in Google Scholar

63. Murali, A., Chakradhar, R. P. S., Rao, J. L. Phys. B 2005, 364, 142. https://doi.org/10.1016/j.physb.2005.04.002.Search in Google Scholar

64. Culea, E., Pop, L., Simon, S. Mater. Sci. Eng. B 2004, 112, 59. https://doi.org/10.1016/j.mseb.2004.06.001.Search in Google Scholar

65. Furniss, D., Harris, E. A., Hollis, D. B. J. Phys. C: Solid State Phys. 1987, 20, L147. https://doi.org/10.1088/0022-3719/20/10/002.Search in Google Scholar

66. Rada, S., Dan, V., Rada, M., Culea, E. J. Non-Cryst. Solids 2010, 356, 474. https://doi.org/10.1016/j.jnoncrysol.2009.12.011.Search in Google Scholar

67. Morris, R. V. Geochim. Cosmochim. Acta 1975, 39, 621. https://doi.org/10.1016/0016-7037(75)90006-X.Search in Google Scholar

68. Tamboli, S., Nair, G. B., Dhoble, S. J., Burghate, D. K. Phys. B 2018, 535, 232. https://doi.org/10.1016/j.physb.2017.07.042.Search in Google Scholar

Received: 2022-06-17
Accepted: 2022-09-07
Published Online: 2023-08-18
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0289/pdf
Scroll to top button