Abstract
We studied the melting temperatures of bismuth and antimony as a function of pressure in this paper because, unlike other solids, melting temperatures are found to fall with increasing pressure. A phenomenological model is proposed to represent the melting temperature as a function of pressure in both solids using Lindemann’s criterion. The computed results are found to be very close to the experimental data. The average absolute percentage relative deviation (AARD%) in bismuth is 0.012, 0.038 in antimony (set-1) and 0.128 in antimony (set-2). Furthermore, the minimum condition is obtained, which gives the pressure at the minimum melting temperature.
Funding source: University of Petroleum and Energy Studies
Award Identifier / Grant number: Unassigned
Acknowledgment
One of the authors, PK is thankful to the University of Petroleum and Energy Studies, Dehradun, for providing the infrastructure for this work.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research received no external funding.
-
Conflict of interest statement: The authors declare no conflict of interest.
References
1. Anzellini, S., Burakovsky, L., Turnbull, R., Bandiello, E., Errandonea, D. Crystals 2021, 11, 452. https://doi.org/10.3390/cryst11040452.Suche in Google Scholar
2. Baty, S. R., Burakovsky, L., Errandonea, D. Crystals 2021, 11, 537. https://doi.org/10.3390/cryst11050537.Suche in Google Scholar
3. Errandonea, D., Burakovsky, L., Preston, D. L., MacLeod, S. G., Santamaría-Perez, D., Chen, S., Cynn, H., Simak, S. I., McMahon, M. I., Proctor, J. E., Mezouar, M. Commun. Mater. 2020, 1, 60. https://doi.org/10.1038/s43246-020-00058-2.Suche in Google Scholar
4. Burakovsky, L., Preston, D. L. J. Phys. Chem. Solid. 2004, 65, 1581. https://doi.org/10.1016/j.jpcs.2003.10.076.Suche in Google Scholar
5. Tammann, G. Crystallization and Fusion; J. A. Barth Verlag: Leipzig, 1903; p. 90.Suche in Google Scholar
6. Shigeaki, O. High Pressure Res. 2018, 38, 414–442. https://doi.org/10.1080/08957959.2018.1541456.Suche in Google Scholar
7. Bridgman, P. W. Phys. Rev. 1941, 60, 351–354. https://doi.org/10.1103/PhysRev.60.351.Suche in Google Scholar
8. Akahama, Y., Kawamura, H., Singh, A. K. J. Appl. Phys. 2002, 92, 5892–5897. https://doi.org/10.1063/1.1515378.Suche in Google Scholar
9. Coleman, A. L., Stevenson, M., McMahon, M. I., Macleod, S. G. Phys. Rev. B 2018, 97, 144107. https://doi.org/10.1103/PhysRevB.97.144107.Suche in Google Scholar
10. Crawford, R. K., Daniels, W. B. J. Chem. Phys. 1971, 55, 5651. https://doi.org/10.1063/1.1675734.Suche in Google Scholar
11. Hardy, W. H.II, Crawford, R. K., Daniels, W. B. J. Chem. Phys. 1971, 54, 1005. https://doi.org/10.1063/1.1674931.Suche in Google Scholar
12. Akella, J., Vaidya, S. N., Kennedy, G. C. J. Appl. Phys. 1969, 40, 2800. https://doi.org/10.1063/1.1658078.Suche in Google Scholar
13. Lahr, P. H., Eversole, W. G. J. Chem. Eng. Data 1962, 7, 42. https://doi.org/10.1021/je60012a011.Suche in Google Scholar
14. Simon, F. E., Glatzel, G., Anorg, Z. Allgem. Chem. 1929, 178, 309. https://doi.org/10.1002/zaac.19291780123.Suche in Google Scholar
15. Babb, S. E. Rev. Mod. Phys. 1963, 35, 400. https://doi.org/10.1103/RevModPhys.35.400.Suche in Google Scholar
16. Kumari, M., Dass, N. Phys. Status Solidi (b) 1988, 146, 105. https://doi.org/10.1002/pssb.2221780234.Suche in Google Scholar
17. Dass, N. Phys. Rev. B 1995, 52, 3023. https://doi.org/10.1103/PhysRevB.52.3023.Suche in Google Scholar
18. Kraut, E. K., Kennedy, G. C. Phys. Rev. Lett. 1966, 16, 608. https://doi.org/10.1103/PhysRevLett.16.608.Suche in Google Scholar
19. Kraut, E. K., Kennedy, G. C. Phys. Rev. 1966, 151, 668. https://doi.org/10.1103/PhysRev.151.668.Suche in Google Scholar
20. Reynolds, C. L., Faughnan, K. A., Barker, R. E. J. Chem. Phys. 1973, 59, 2943. https://doi.org/10.1063/1.1680427.Suche in Google Scholar
21. Lindemann, F. A. Phys. Z. 1910, 11, 609. https://doi.org/10.3109/07357909309011680.Suche in Google Scholar PubMed
22. Schlosser, H., Vineet, P., Ferrante, J. Phys. Rev. 1989, 40, 5929. https://doi.org/10.1103/PhysRevB.40.6405.Suche in Google Scholar
23. Degtyareva, O., MCMahon, M. I., Nelmes, R. J. High Pressure Res. 2004, 24, 319–356. https://doi.org/10.1080/08957950412331281057.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Predicted interfacial thermal conductance and thermal conductivity of graphite flakes/Al composites with different alloy composition
- Tribological behaviour of nano-sized beta phase silicon nitride: effects of the contact conditions
- Experimental assessment on the contact characteristics of 3D printed flexible poly lactic acid (PLA) soft fingertips
- Efficient natural dye sensitized solar cell from PVDF based polymer electrolyte filled with layered graphite
- Regulation of the photovoltaic performance of TiO2@MAPbI3 core–shell nanowire arrays
- Hydrothermal synthesis of CoAl2O4 spinel: effect of reaction conditions on the characteristic and morphological features
- Peroxymonosulfate oxidation process activated with heterogeneous amorphous Co78Si8B14 alloy for degradation of Orange II
- A study of melting temperatures in bismuth and antimony
- Short Communication
- Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Predicted interfacial thermal conductance and thermal conductivity of graphite flakes/Al composites with different alloy composition
- Tribological behaviour of nano-sized beta phase silicon nitride: effects of the contact conditions
- Experimental assessment on the contact characteristics of 3D printed flexible poly lactic acid (PLA) soft fingertips
- Efficient natural dye sensitized solar cell from PVDF based polymer electrolyte filled with layered graphite
- Regulation of the photovoltaic performance of TiO2@MAPbI3 core–shell nanowire arrays
- Hydrothermal synthesis of CoAl2O4 spinel: effect of reaction conditions on the characteristic and morphological features
- Peroxymonosulfate oxidation process activated with heterogeneous amorphous Co78Si8B14 alloy for degradation of Orange II
- A study of melting temperatures in bismuth and antimony
- Short Communication
- Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries
- News
- DGM – Deutsche Gesellschaft für Materialkunde