Startseite A study of melting temperatures in bismuth and antimony
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A study of melting temperatures in bismuth and antimony

  • Piyush Kuchhal ORCID logo EMAIL logo und Narsingh Dass
Veröffentlicht/Copyright: 16. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We studied the melting temperatures of bismuth and antimony as a function of pressure in this paper because, unlike other solids, melting temperatures are found to fall with increasing pressure. A phenomenological model is proposed to represent the melting temperature as a function of pressure in both solids using Lindemann’s criterion. The computed results are found to be very close to the experimental data. The average absolute percentage relative deviation (AARD%) in bismuth is 0.012, 0.038 in antimony (set-1) and 0.128 in antimony (set-2). Furthermore, the minimum condition is obtained, which gives the pressure at the minimum melting temperature.


Corresponding author: Piyush Kuchhal, Department of Applied Sciences, UPES, Dehradun, 248007, India, E-mail:

Funding source: University of Petroleum and Energy Studies

Award Identifier / Grant number: Unassigned

Acknowledgment

One of the authors, PK is thankful to the University of Petroleum and Energy Studies, Dehradun, for providing the infrastructure for this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research received no external funding.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

1. Anzellini, S., Burakovsky, L., Turnbull, R., Bandiello, E., Errandonea, D. Crystals 2021, 11, 452. https://doi.org/10.3390/cryst11040452.Suche in Google Scholar

2. Baty, S. R., Burakovsky, L., Errandonea, D. Crystals 2021, 11, 537. https://doi.org/10.3390/cryst11050537.Suche in Google Scholar

3. Errandonea, D., Burakovsky, L., Preston, D. L., MacLeod, S. G., Santamaría-Perez, D., Chen, S., Cynn, H., Simak, S. I., McMahon, M. I., Proctor, J. E., Mezouar, M. Commun. Mater. 2020, 1, 60. https://doi.org/10.1038/s43246-020-00058-2.Suche in Google Scholar

4. Burakovsky, L., Preston, D. L. J. Phys. Chem. Solid. 2004, 65, 1581. https://doi.org/10.1016/j.jpcs.2003.10.076.Suche in Google Scholar

5. Tammann, G. Crystallization and Fusion; J. A. Barth Verlag: Leipzig, 1903; p. 90.Suche in Google Scholar

6. Shigeaki, O. High Pressure Res. 2018, 38, 414–442. https://doi.org/10.1080/08957959.2018.1541456.Suche in Google Scholar

7. Bridgman, P. W. Phys. Rev. 1941, 60, 351–354. https://doi.org/10.1103/PhysRev.60.351.Suche in Google Scholar

8. Akahama, Y., Kawamura, H., Singh, A. K. J. Appl. Phys. 2002, 92, 5892–5897. https://doi.org/10.1063/1.1515378.Suche in Google Scholar

9. Coleman, A. L., Stevenson, M., McMahon, M. I., Macleod, S. G. Phys. Rev. B 2018, 97, 144107. https://doi.org/10.1103/PhysRevB.97.144107.Suche in Google Scholar

10. Crawford, R. K., Daniels, W. B. J. Chem. Phys. 1971, 55, 5651. https://doi.org/10.1063/1.1675734.Suche in Google Scholar

11. Hardy, W. H.II, Crawford, R. K., Daniels, W. B. J. Chem. Phys. 1971, 54, 1005. https://doi.org/10.1063/1.1674931.Suche in Google Scholar

12. Akella, J., Vaidya, S. N., Kennedy, G. C. J. Appl. Phys. 1969, 40, 2800. https://doi.org/10.1063/1.1658078.Suche in Google Scholar

13. Lahr, P. H., Eversole, W. G. J. Chem. Eng. Data 1962, 7, 42. https://doi.org/10.1021/je60012a011.Suche in Google Scholar

14. Simon, F. E., Glatzel, G., Anorg, Z. Allgem. Chem. 1929, 178, 309. https://doi.org/10.1002/zaac.19291780123.Suche in Google Scholar

15. Babb, S. E. Rev. Mod. Phys. 1963, 35, 400. https://doi.org/10.1103/RevModPhys.35.400.Suche in Google Scholar

16. Kumari, M., Dass, N. Phys. Status Solidi (b) 1988, 146, 105. https://doi.org/10.1002/pssb.2221780234.Suche in Google Scholar

17. Dass, N. Phys. Rev. B 1995, 52, 3023. https://doi.org/10.1103/PhysRevB.52.3023.Suche in Google Scholar

18. Kraut, E. K., Kennedy, G. C. Phys. Rev. Lett. 1966, 16, 608. https://doi.org/10.1103/PhysRevLett.16.608.Suche in Google Scholar

19. Kraut, E. K., Kennedy, G. C. Phys. Rev. 1966, 151, 668. https://doi.org/10.1103/PhysRev.151.668.Suche in Google Scholar

20. Reynolds, C. L., Faughnan, K. A., Barker, R. E. J. Chem. Phys. 1973, 59, 2943. https://doi.org/10.1063/1.1680427.Suche in Google Scholar

21. Lindemann, F. A. Phys. Z. 1910, 11, 609. https://doi.org/10.3109/07357909309011680.Suche in Google Scholar PubMed

22. Schlosser, H., Vineet, P., Ferrante, J. Phys. Rev. 1989, 40, 5929. https://doi.org/10.1103/PhysRevB.40.6405.Suche in Google Scholar

23. Degtyareva, O., MCMahon, M. I., Nelmes, R. J. High Pressure Res. 2004, 24, 319–356. https://doi.org/10.1080/08957950412331281057.Suche in Google Scholar

Received: 2022-01-15
Accepted: 2022-07-11
Published Online: 2022-11-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0018/html?lang=de
Button zum nach oben scrollen