Home Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries
Article
Licensed
Unlicensed Requires Authentication

Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries

  • Hosane A. Taroco , Sicele L. A. Gonçalves , Eric M. Garcia ORCID logo EMAIL logo , Cristiane G. Taroco , Julio O. F. Melo and Amauri G. Souza
Published/Copyright: November 16, 2022
Become an author with De Gruyter Brill

Abstract

In this paper an interesting alternative for recycling of Li-ion battery cathode and and improving the corrosion resistance of 430 stainless steel is presented. The spent cathode composition has molecular formula approximately LiCoO2. The cobalt electrodeposition onto 430 SS was performed using the cobalt bath obtained by spent LiCoO2 lixiviation. In air atmosphere and high temperatures the metallic cobalt is transformed into a Co3O4 layer that acts as protection against chromium volatilization. This was confirmed by energy-dispersive X-ray spectroscopy and scanning eletron microscopy measurements. Electrochemical impedance spectroscopy measurements, in 0.5 M H2SO4 after thermal treatment at 600, 700 and 800 °C show that the cobalt electrodeposition is efficient in mitigating the effects of corrosion when 430 stainless steel is subjected to high temperatures.


Corresponding author: Eric M. Garcia, University of São João Del Rei – Sete Lagoas Campus / DECEB, Sete Lagoas-MG, 35701-970, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by CNPq, Federal University of São João Del Rei UFSJ/Sete Lagoas/DECEB, Multicenter Graduate Program in Chemistry (PPGMQ) and Minas Gerais Chemistry Network (Rede Mineira de Química).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yua, W., Yi, G., Shang, Z., Zhang, Y., Xu, S. eTransportation 2022, 11, 100155. https://doi.org/10.1016/j.etran.2022.100155.Search in Google Scholar

2. Shahjalala, M., Roy, P. K., Shams, T., Fly, A., Chowdhury, J. I., Ahmed, M. R., Liu, K. Energy 2022, 241, 122881. https://doi.org/10.1016/j.energy.2021.122881.Search in Google Scholar

3. Golmohammadzadeh, R., Faraji, F., Jong, B., Pozo-Gonzalo, C., Banerjee, P. C. Renew. Sustain. Energy Rev. 2022, 159, 112202. https://doi.org/10.1016/j.rser.2022.112202.Search in Google Scholar

4. Windisch-Kerna, S., Gerold, E., Nigl, T., Jandric, A., Altendorfer, M., Rutrecht, B., Scherhaufer, S., Raupenstrauch, H., Pomberger, R., Antrekowitsch, H., Part, F. Waste Manag. 2022, 138, 125. https://doi.org/10.1016/j.wasman.2021.11.038.Search in Google Scholar PubMed

5. Zhang, D., Chen, Y., Su, Y., Hong, Y., Wanga, C., Zhou, G., Wang, S., He, W., Sun, Y., Zhang, W., He, X., Xu, C., Li, Y., Xu, Z., Du, Y. Surface. Interfac. 2022, 28, 101603. https://doi.org/10.1016/j.surfin.2021.101603.Search in Google Scholar

6. Bahar, J., Lghazi, Y., Youbi, B., Himi, M. A., Bimaghra, I. J. Solid State Electrochem. 2021, 25, 1889. https://doi.org/10.1007/s10008-021-04961-7.Search in Google Scholar

7. Bai, A., Hu, C. C. Effects of electroplating variables on the composition and morphology of nickel/cobalt deposits plated through means of cyclic voltammetry. Electrochim. Acta 2002, 47, 3447. https://doi.org/10.1016/S0013-4686(02)00281-5.Search in Google Scholar

8. Gonçalves, S. L. A., Garcia, E. M., Tarôco, H. A., Matencio, T. Chem. Eng. 2020, 4, 10. https://doi.org/10.3390/chemengineering4010010.Search in Google Scholar

9. Shao, Y., Ding, J. T., Guo, P. Y., Ou, W. X., Mao, S. Y., Huang, M. R., He, Z., Wang, D. P., Yang, L. L., Zhou, P. J., Chen, S. J. J. Alloys Compd. 2021, 871, 159439. https://doi.org/10.1016/j.jallcom.2021.159439.Search in Google Scholar

10. Saeidpour, F., Ebrahimifar, H. Corrosion Sci. 2021, 182, 109280. https://doi.org/10.1016/j.corsci.2021.109280.Search in Google Scholar

11. Gonçalves, S. L. A., Garcia, E. M., Taroco, H. A., Matencio, T. Materia 2021, 26, e13074. https://doi.org/10.1590/s1517-707620210004.1374.Search in Google Scholar

12. Gonçalves, S. L. A., Garcia, E. M., Taroco, H. A., Teixeira, R. G., Guedes, K. J., Gorgulho, H. F., Martelli, P. B., Fernandes, A. P. L. Waste Manag. 2015, 46, 497. https://doi.org/10.1016/j.wasman.2015.08.026.Search in Google Scholar PubMed

13. Gan, L., Nishimura, T., Sheikh, S. A., Saeki, I., Murakami, H. Corrosion Sci. 2020, 176, 109037. https://doi.org/10.1016/j.corsci.2020.109037.Search in Google Scholar

14. Garcia, E. M., Taroco, H. A. Recycl. 2018, 3, 42. https://doi.org/10.3390/recycling3030042.Search in Google Scholar

15. Garcia, E. M., Taroco, H. A., Domingues, R. Z., Matencio, T., Gonçalves, S. L. A. Ionics 2016, 22, 735. https://doi.org/10.1007/s11581-016-1691-4.Search in Google Scholar

16. Freitas, M. B. J. G., Garcia, E. M., Celante, V. G. J. Appl. Electrochem. 2009, 39, 601. https://doi.org/10.1007/s10800-008-9698-9.Search in Google Scholar

17. Freitas, M. B. J. G., Garcia, E. M. J. Power Sources 2007, 171, 953. https://doi.org/10.1016/j.jpowsour.2007.07.002.Search in Google Scholar

18. Garcia, E. M., Tarôco, H. A., Matencio, T., Santos, J. A. F., Freitas, M. B. J. G. J. Appl. Electrochem. 2011, 41, 1373. https://doi.org/10.1007/s10800-011-0339-3.Search in Google Scholar

Received: 2022-06-03
Accepted: 2022-07-13
Published Online: 2022-11-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0263/html
Scroll to top button