Startseite Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries

  • Hosane A. Taroco , Sicele L. A. Gonçalves , Eric M. Garcia ORCID logo EMAIL logo , Cristiane G. Taroco , Julio O. F. Melo und Amauri G. Souza
Veröffentlicht/Copyright: 16. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper an interesting alternative for recycling of Li-ion battery cathode and and improving the corrosion resistance of 430 stainless steel is presented. The spent cathode composition has molecular formula approximately LiCoO2. The cobalt electrodeposition onto 430 SS was performed using the cobalt bath obtained by spent LiCoO2 lixiviation. In air atmosphere and high temperatures the metallic cobalt is transformed into a Co3O4 layer that acts as protection against chromium volatilization. This was confirmed by energy-dispersive X-ray spectroscopy and scanning eletron microscopy measurements. Electrochemical impedance spectroscopy measurements, in 0.5 M H2SO4 after thermal treatment at 600, 700 and 800 °C show that the cobalt electrodeposition is efficient in mitigating the effects of corrosion when 430 stainless steel is subjected to high temperatures.


Corresponding author: Eric M. Garcia, University of São João Del Rei – Sete Lagoas Campus / DECEB, Sete Lagoas-MG, 35701-970, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by CNPq, Federal University of São João Del Rei UFSJ/Sete Lagoas/DECEB, Multicenter Graduate Program in Chemistry (PPGMQ) and Minas Gerais Chemistry Network (Rede Mineira de Química).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yua, W., Yi, G., Shang, Z., Zhang, Y., Xu, S. eTransportation 2022, 11, 100155. https://doi.org/10.1016/j.etran.2022.100155.Suche in Google Scholar

2. Shahjalala, M., Roy, P. K., Shams, T., Fly, A., Chowdhury, J. I., Ahmed, M. R., Liu, K. Energy 2022, 241, 122881. https://doi.org/10.1016/j.energy.2021.122881.Suche in Google Scholar

3. Golmohammadzadeh, R., Faraji, F., Jong, B., Pozo-Gonzalo, C., Banerjee, P. C. Renew. Sustain. Energy Rev. 2022, 159, 112202. https://doi.org/10.1016/j.rser.2022.112202.Suche in Google Scholar

4. Windisch-Kerna, S., Gerold, E., Nigl, T., Jandric, A., Altendorfer, M., Rutrecht, B., Scherhaufer, S., Raupenstrauch, H., Pomberger, R., Antrekowitsch, H., Part, F. Waste Manag. 2022, 138, 125. https://doi.org/10.1016/j.wasman.2021.11.038.Suche in Google Scholar PubMed

5. Zhang, D., Chen, Y., Su, Y., Hong, Y., Wanga, C., Zhou, G., Wang, S., He, W., Sun, Y., Zhang, W., He, X., Xu, C., Li, Y., Xu, Z., Du, Y. Surface. Interfac. 2022, 28, 101603. https://doi.org/10.1016/j.surfin.2021.101603.Suche in Google Scholar

6. Bahar, J., Lghazi, Y., Youbi, B., Himi, M. A., Bimaghra, I. J. Solid State Electrochem. 2021, 25, 1889. https://doi.org/10.1007/s10008-021-04961-7.Suche in Google Scholar

7. Bai, A., Hu, C. C. Effects of electroplating variables on the composition and morphology of nickel/cobalt deposits plated through means of cyclic voltammetry. Electrochim. Acta 2002, 47, 3447. https://doi.org/10.1016/S0013-4686(02)00281-5.Suche in Google Scholar

8. Gonçalves, S. L. A., Garcia, E. M., Tarôco, H. A., Matencio, T. Chem. Eng. 2020, 4, 10. https://doi.org/10.3390/chemengineering4010010.Suche in Google Scholar

9. Shao, Y., Ding, J. T., Guo, P. Y., Ou, W. X., Mao, S. Y., Huang, M. R., He, Z., Wang, D. P., Yang, L. L., Zhou, P. J., Chen, S. J. J. Alloys Compd. 2021, 871, 159439. https://doi.org/10.1016/j.jallcom.2021.159439.Suche in Google Scholar

10. Saeidpour, F., Ebrahimifar, H. Corrosion Sci. 2021, 182, 109280. https://doi.org/10.1016/j.corsci.2021.109280.Suche in Google Scholar

11. Gonçalves, S. L. A., Garcia, E. M., Taroco, H. A., Matencio, T. Materia 2021, 26, e13074. https://doi.org/10.1590/s1517-707620210004.1374.Suche in Google Scholar

12. Gonçalves, S. L. A., Garcia, E. M., Taroco, H. A., Teixeira, R. G., Guedes, K. J., Gorgulho, H. F., Martelli, P. B., Fernandes, A. P. L. Waste Manag. 2015, 46, 497. https://doi.org/10.1016/j.wasman.2015.08.026.Suche in Google Scholar PubMed

13. Gan, L., Nishimura, T., Sheikh, S. A., Saeki, I., Murakami, H. Corrosion Sci. 2020, 176, 109037. https://doi.org/10.1016/j.corsci.2020.109037.Suche in Google Scholar

14. Garcia, E. M., Taroco, H. A. Recycl. 2018, 3, 42. https://doi.org/10.3390/recycling3030042.Suche in Google Scholar

15. Garcia, E. M., Taroco, H. A., Domingues, R. Z., Matencio, T., Gonçalves, S. L. A. Ionics 2016, 22, 735. https://doi.org/10.1007/s11581-016-1691-4.Suche in Google Scholar

16. Freitas, M. B. J. G., Garcia, E. M., Celante, V. G. J. Appl. Electrochem. 2009, 39, 601. https://doi.org/10.1007/s10800-008-9698-9.Suche in Google Scholar

17. Freitas, M. B. J. G., Garcia, E. M. J. Power Sources 2007, 171, 953. https://doi.org/10.1016/j.jpowsour.2007.07.002.Suche in Google Scholar

18. Garcia, E. M., Tarôco, H. A., Matencio, T., Santos, J. A. F., Freitas, M. B. J. G. J. Appl. Electrochem. 2011, 41, 1373. https://doi.org/10.1007/s10800-011-0339-3.Suche in Google Scholar

Received: 2022-06-03
Accepted: 2022-07-13
Published Online: 2022-11-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0263/html
Button zum nach oben scrollen