Home Regulation of the photovoltaic performance of TiO2@MAPbI3 core–shell nanowire arrays
Article
Licensed
Unlicensed Requires Authentication

Regulation of the photovoltaic performance of TiO2@MAPbI3 core–shell nanowire arrays

  • Li Cheng , Shulin Xing , Jizhuang He , Yunfei He , Jiahua Li and Chunlin Fu EMAIL logo
Published/Copyright: November 16, 2022
Become an author with De Gruyter Brill

Abstract

To further the exploration of perovskite nanowires, TiO2@CH3NH3PbI3 (TiO2@MAPbI3) core–shell nanowire arrays were successfully prepared via immersion and spin-coating methods. Because the shell thickness has a significant influence on the carrier transport capacity of nanowire arrays, different shell thicknesses were obtained by changing the precursor concentration. Subsequently, the relationship between the precursor concentration and shell thicknesses and the resulting properties of the nanowire arrays were investigated. The X-ray diffraction results showed that the prepared nanowire arrays consisted of only MAPbI3, TiO2, and fluorine-doped tin oxide phases, with no impurities. From the scanning electron microscopy and energy dispersive X-ray spectroscopy results, the MAPbI3 shell material was successfully coated onto the core layer of the TiO2 nanowire arrays. In addition, the average size of the core–shell nanowire arrays and the shell thickness were obtained using scanning electron microscopy and related software analyses. The results showed that the shell thickness was the largest (40 nm) when the precursor concentration was the lowest (0.025 mol L−1). Ultraviolet–visible spectroscopy showed that when the precursor concentration was 0.025 mol L−1 and the shell thickness was the largest, the nanowire array exhibited the highest absorbance and the smallest band gap, which is conducive to generating more carriers and improving its photovoltaic performance; the JV curve showed the highest photoelectric conversion efficiency at this concentration and shell thickness. Therefore, it can be inferred that the shell thickness may affect the optical and photovoltaic properties. The relationship between the precursor concentration and thickness as well as the influence of this relationship on the properties of core–shell nanowire arrays should be further explored, to establish a foundation for the use of perovskite nanowires in the photovoltaic field.


Corresponding author: Chunlin Fu, School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China; and Chongqing Key Laboratory of Nano-Micro Composite Materials and Devices, Chongqing, 401331, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by the Program for Creative Research Groups at the University of Chongqing (Grant No. CXQT19031), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-M201901501), Natural Science Foundation Project of Chongqing, China (cstc2020jcyj-msxmX0030), Natural Science Foundation of Chongqing, China (cstc2020jcyj-zdxmX0008), and Special Project of Chongqing Technology Innovation and Application Development (cstc2020jscx-msxmX0218).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Younis, A., Lin, C. H., Guan, X., Shahrokhi, S., Huang, C. Y., Wang, Y. T., He, Y. T., Singh, S., Hu, L., Retamal, J. R. D., He, J. H., Wu, T. Adv. Mater. 2021, 33, 2005000. https://doi.org/10.1002/adma.202005000.Search in Google Scholar PubMed

2. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. https://doi.org/10.1021/ja809598r.Search in Google Scholar PubMed

3. Li, J. L., Xia, R., Qi, W. J., Zhou, X., Cheng, J., Chen, Y. F., Hou, G. F., Ding, Y., Li, Y. L., Zhao, Y., Zhang, X. D. J. Power Sources 2021, 45, 229313. https://doi.org/10.1016/j.jpowsour.2020.229313.Search in Google Scholar

4. Wang, Z. Y., Zhu, X. J., Zuo, S. N., Chen, M., Zhang, C., Wang, C. Y., Ren, X. D., Yang, A., Liu, Z. K., Xu, X. X., Chang, Q., Yang, S. F., Meng, F. Y., Liu, Z. X., Yuan, N. Y., Ding, J. N., Liu, S. Z., Yang, D. Adv. Funct. Mater. 2020, 30, 1908298. https://doi.org/10.1002/adfm.201908298.Search in Google Scholar

5. Hu, D., Tan, X. Y., Sun, L., Zhang, Y. B., Yan, W. S. J. Mater. Res. 2021, 35, 1–9. https://doi.org/10.1557/s43578-020-00095-0.Search in Google Scholar

6. Rothmann, M. U., Kim, J. S., Borchert, J., Lohmann, K. B., OLeary, C. M., Sheader, A. A., Clark, L., Snaith, H. J., Johnston, M. B., Nellist, P. D., Herz, L. M. Science 2020, 370, 6516. https://doi.org/10.1126/science.abb5940.Search in Google Scholar PubMed

7. Park, H. H. Nanomaterials 2021, 11, 88. https://doi.org/10.3390/nano11010088.Search in Google Scholar PubMed PubMed Central

8. Zhang, A., Lv, Q. R. ChemistrySelect 2020, 5, 12641–12659. https://doi.org/10.1002/slct.202003659.Search in Google Scholar

9. Wei, Z. G., Zhao, Y. H., Jiang, J., Yan, W. B., Feng, Y. Z., Ma, J. M. Chin. Chem. Lett. 2020, 31, 3055–3064. https://doi.org/10.1016/j.cclet.2020.05.016.Search in Google Scholar

10. Nandi, P., Topwal, D., Park, N. G., Shin, H. J. Phys. Appl. Phys. 2020, 53, 3002. https://doi.org/10.1088/1361-6463/abb047.Search in Google Scholar

11. Sharmoukh, W., Kiey, S. A. A., Ali, B. A., Menon, L., Allam, N. K. Sustain. Mater. Technol. 2020, 26, 67. https://doi.org/10.1016/j.susmat.2020.e00210.Search in Google Scholar

12. Lee, J. H., Lee, D. G., Jung, H. S., Lee, H. H., Kim, H. K. J. Alloys Compd. 2020, 845, 155531. https://doi.org/10.1016/j.jallcom.2020.155531.Search in Google Scholar

13. Chaudhary, J., Choudhary, S., Agrawal, B., Verma, A. S. Semiconductors 2020, 54, 1023–1031. https://doi.org/10.1134/s1063782620090055.Search in Google Scholar

14. Huang, S., Dong, Q., Shi, Y., Duan, L., Wang, L. D. Chem. Eng. J. 2020, 24, 125024. https://doi.org/10.1016/j.cej.2020.125024.Search in Google Scholar

15. Wu, D., Zhou, H., Song, Z. H., Liu, R. H., Wang, H. J. Mater. Chem. C 2018, 6, 8628–8637. https://doi.org/10.1039/c8tc02103a.Search in Google Scholar

16. Ciric, L., Ashby, K., Abadie, T., Spina, M., Duchamp, M., Nafradi, B., Kollar, M., Forro, L., Horvath, E. Appl. Phys. Lett. 2018, 112, 111901. https://doi.org/10.1063/1.5023115.Search in Google Scholar

17. Horvath, E., Spina, M., Szekrenyes, Z., Kamaras, K., Gaal, R., Gachet, D., Forro, L. Nano Lett. 2014, 14, 6761–6766. https://doi.org/10.1021/nl5020684.Search in Google Scholar PubMed

18. Zhang, D. Q., Gu, L. L., Zhang, Q. P., Lin, Y. J., Lien, D. H., Kam, M., Poddar, S., Garnett, E. C., Javey, A., Fan, Z. Y. Nano Lett. 2019, 19, 2850–2857. https://doi.org/10.1021/acs.nanolett.8b04887.Search in Google Scholar PubMed

19. Wu, D. J., Zhou, H., Song, Z. H., Zheng, M., Liu, R. H., Pan, X. Y., Wan, H. Z., Zhang, J., Wang, H., Li, X. M., Zeng, H. B. ACS Nano 2020, 14, 2777–2787. https://doi.org/10.1021/acsnano.9b09315.Search in Google Scholar PubMed

20. Qiu, J. H., Qiu, Y. C., Yan, K. Y., Zhong, M., Mu, C., Yan, H., Yang, S. H. Nanoscale 2013, 5, 3245–3248. https://doi.org/10.1039/c3nr00218g.Search in Google Scholar PubMed

21. Chang, D. A., Lin, P., Tseng, T. Y. J. Appl. Phys. 1995, 77, 4445–4451. https://doi.org/10.1063/1.359472.Search in Google Scholar

22. Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H., Park, N. G. Chem. Rev. 2020, 120, 7867–7918. https://doi.org/10.1021/acs.chemrev.0c00107.Search in Google Scholar PubMed

Received: 2021-07-03
Accepted: 2022-07-15
Published Online: 2022-11-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8450/html
Scroll to top button