Startseite Efficient natural dye sensitized solar cell from PVDF based polymer electrolyte filled with layered graphite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Efficient natural dye sensitized solar cell from PVDF based polymer electrolyte filled with layered graphite

  • Kumari Pooja , Mridula Tripathi und Priyanka Chawla ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Graphite nanopowder was synthesized by mechanical method using ball mill and used as filler in polymer electrolyte film based on Polyvinylidene fluoride (PVDF) for application in natural dye sensitized solar cells (DSSCs). A simple solution cast technique was employed for the preparation of polymer electrolyte film with incorporation of different weight percent (1, 2 and 3) graphite filler along with propylene carbonate and ethylene carbonate as plasticizers. X-ray diffraction and differential scanning calorimetry analysis was carried out to determine the crystallinity of the graphite nanopowder and its glass transition temperature. The film with 2 % weight showed the best ionic conductivity of about 5.63 × 10−3 S cm−1. The betacyanin dye from beetroot and chlorophyll dye from spinach leaves was evaluated for the fabrication of dye sensitized solar cell (DSSC). The carboxyl, hydroxyl and porphyrin groups present in these dyes helped in binding the dye with the photoanode of DSSCs.


Corresponding author: Dr. Priyanka Chawla, Department of Chemistry, CMP Degree College, University of Allahabad, 2-MG Marg, Civil lines, 211002, Prayagraj, India, E-mail:

  1. Author contributions: All the authors have accepted rsesponsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: One of the author (Dr. Priyanka Chawla) is thankful to CSIR-India for the financial support in the form of Research Associate.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607.Suche in Google Scholar PubMed

2. Gratzel, M. Inorg. Chem. 2005, 44, 6841. https://doi.org/10.1021/ic0508371.Suche in Google Scholar PubMed

3. Sakali, S. M., Khanmirzaei, M. H., Lu, S. C., Ramesh, S., Ramesh, K. Ionics 2019, 25, 319. https://doi.org/10.1007/s11581-018-2598-z.Suche in Google Scholar

4. Chawla, P., Tripathi, M. ECS Solid State Lett. 2015, 4, 21. https://doi.org/10.1149/2.0041506ssl.Suche in Google Scholar

5. Cheng, F., Ou, Y., Liu, G., Zhao, L., Dong, B., Wang, S., Wen, S. Nanomaterials 2019, 9, 783. https://doi.org/10.3390/nano9050783.Suche in Google Scholar PubMed PubMed Central

6. Arof, A. K., Aziz, M. F., Noor, M. M., Careem, M. A. Int. J. Hydrogen Energy 2014, 39, 2929. https://doi.org/10.1016/j.ijhydene.2013.07.028.Suche in Google Scholar

7. Prasadini, K. W., Perere, K. S., Vidanapathirana, K. P. Bull. Mater. Sci. 2019, 42, 1.10.1007/s12034-018-1682-3Suche in Google Scholar

8. Abrol, S. A., Bhargava, C., Sharma, P. K. Mater. Res. Express 2021, 8, 045010. https://doi.org/10.1088/2053-1591/abf474.Suche in Google Scholar

9. Zhu, Q., Wang, X. M., Miller, J. D. ACS Appl. Mater. Interfaces 2019, 11, 8954. https://doi.org/10.1021/acsami.8b13735.Suche in Google Scholar PubMed

10. ProQuest Dissertations and Theses. Ph.D. Thesis, Michigan State University, Publication Number: AAI3092144; Source: Dissertation Abstracts International, Vols. 64–05, 2003; p. 2343. Section: B. ISBN: 9780496398515.Suche in Google Scholar

11. Kim, J. H., Kim, D. H., So, J. H., Koo, H. J. Energies 2022, 15, 219. https://doi.org/10.3390/en15010219.Suche in Google Scholar

12. Amogne, N. Y., Ayele, D. W., Tsigie, Y. A. Mater. Renew. Sustain. Energy 2020, 9, 23. https://doi.org/10.1007/s40243-020-00183-5.Suche in Google Scholar

13. Rajkumar, S., Kumar, M. N., Suguna, K., Muthulakshmi, S., Kumar, R. A. Optik 2019, 178, 224. https://doi.org/10.1016/j.ijleo.2018.10.004.Suche in Google Scholar

14. Upadhyay, R., Tripathi, M., Chawla, P., Pandey, A. J. Solid State Electrochem. 2014, 18, 1889. https://doi.org/10.1007/s10008-014-2426-y.Suche in Google Scholar

15. Park, J. Y., Kim, C. S., Okuyama, K., Lee, H. M. J. Power Sources 2016, 306, 764. https://doi.org/10.1016/j.jpowsour.2015.12.087.Suche in Google Scholar

16. Cho, S., Sung, H. K., Lee, S. J., Kim, W. H., Kim, D. H., Han, Y. S. Nanomaterials 2019, 9, 1645. https://doi.org/10.3390/nano9121645.Suche in Google Scholar PubMed PubMed Central

17. Tripathi, M., Cahwla, P. Renewable Energy in the Service of Mankind II; Sayigh, A., Ed.; Springer, 2016.Suche in Google Scholar

18. Basha, S. S., Sundari, G. S., Kumar, K. V., Rao, M. C. Polym. Bull. 2018, 75, 925. https://doi.org/10.1007/s10904-016-0487-3.Suche in Google Scholar

19. Flora, X. H., Ulaganathan, M., Rajendran, S. Int. J. Electrochem. Sci. 2012, 7, 7451.10.1016/S1452-3981(23)15796-8Suche in Google Scholar

20. Pavani, Y., Ravi, M., Bhavani, S., Sharma, A. K. Polym. Eng. Sci. 2012, 52, 1685. https://doi.org/10.1002/pen.23118.Suche in Google Scholar

21. Sundaramoorthy, K., Muthu, S. P., Perumalsamy, R. J. Mater. Sci. Mater. Electron. 2018, 29, 18074. https://doi.org/10.1007/s10854-018-9917-z.Suche in Google Scholar

22. Kannadhasan, S., Pandian, M. S., Ramasamy, P. AIP Conf. Proc. 2017, 1832, 050061. https://doi.org/10.1063/1.4980294.Suche in Google Scholar

23. Kannadhasan, S., Pandian, M. S., Ramasamy, P. AIP Conf. Proc. 2018, 1942, 140034. https://doi.org/10.1063/1.5029165.Suche in Google Scholar

24. Kuppu, S. V., Jeyaraman, A. R., Guruviah, P. K., Thambusamy, S. Curr. Appl. Phys. 2018, 18, 619. https://doi.org/10.1016/j.cap.2018.03.014.Suche in Google Scholar

25. Kumar, S., Manikandan, V. S., Panda, S. K., Senanayak, S. P., Palai, A. K. Sol. Energy 2020, 208, 949. https://doi.org/10.1016/j.solener.2020.08.060.Suche in Google Scholar

26. Ganta, D., Jara, J., Villanueva, R. Chem. Phys. Lett. 2017, 679, 97. https://doi.org/10.1016/j.cplett.2017.04.094.Suche in Google Scholar

27. Zhou, H., Wu, L., Gao, Y., Ma, T. J. Photochem. Photobiol., A 2011, 219, 188. https://doi.org/10.1016/j.jphotochem.2011.02.008.Suche in Google Scholar

Received: 2021-11-08
Accepted: 2022-07-08
Published Online: 2022-11-15
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8638/html?lang=de
Button zum nach oben scrollen