Startseite Technik Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures

  • Yidi Wang , Xiaoqian Li und Aimin Liang EMAIL logo
Veröffentlicht/Copyright: 21. Juli 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research, the wear behavior and microstructural transformation of approximately single face-centered cubic phase AlCoCrFeNi high-entropy alloy at elevated temperatures (∼25–600 °C) were investigated in detail. The combined action of environmental temperature and friction force can induce significant and regular transformation of the preferred orientation of crystalline grains at the high-entropy alloy friction interface. Generally as the temperature rises its principal wear mechanism varies fairly regularly from abrasive wear to delamination wear, and then to adhesive wear. It is worth noting that at a test temperature of 100 °C the wear debris formed during friction was rolled repeatedly and then separated by delamination, which played a pivotal role in inhibiting wear. Furthermore, five specific wear mechanisms of face-centered cubic phase high-entropy alloy at elevated temperatures have been elucidated through this study.


Corresponding author: Aimin Liang, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, China; and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China, E-mail:

Acknowledgements

The authors appreciate the assistance of Engineer Jie Yan and Wenjun Qu in material performance and structure characterization, Dr. Yunxia Wang in high temperature friction test, and the financial support of Chinese Academy of Sciences for the research.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors do not have any conflicts of interest related to this article.

  4. Data availability: The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

1. Nishikawa, S., Nagata, K. Trans. Japan Inst. Met. 1976, 17, 277. https://doi.org/10.2320/matertrans1960.17.277.Suche in Google Scholar

2. Sun, Y. S., Wen, K. Z., Yuan, G. Y. Chin. J. Nonferr. Met. 1999, 1, 59. https://doi.org/10.3321/j.issn:1004-0609.1999.01.011.Suche in Google Scholar

3. Seikh, A. H., Baig, M., Singh, J. K., Mohammed, J. A., Luqman, M., Abdo, H. S., Khan, A. R Alharthi, N. H Coatings 2019, 9, 1. https://doi.org/10.3390/coatings9100686.Suche in Google Scholar

4. Greer, L. A. Nature 1993, 366, 303. https://doi.org/10.1038/366303a0.Suche in Google Scholar

5. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. https://doi.org/10.1002/adem.200300567.Suche in Google Scholar

6. Yeh, J.-W., Lin, S.-J., Chin, T.-S., Gan, J.-Y., Chen, S.-K., Shun, T.-T., Tsau, C.-H., Chou, S.-Y. Metall. Mater. Trans. 2004, 35, 2533. https://doi.org/10.1007/s11661-006-0234-4.Suche in Google Scholar

7. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Mater. Sci. Eng. 2004, 375, 213. https://doi.org/10.1016/j.msea.2003.10.257.Suche in Google Scholar

8. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. https://doi.org/10.1016/j.pmatsci.2013.10.001.Suche in Google Scholar

9. Zhang, L. S., Ma, G. L., Fu, L. C., Tian, J. Y. Adv. Mater. Res. 2013, 631, 227. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227.Suche in Google Scholar

10. Gorsse, S., Miracle, D. B., Senkov, O. N. Acta Mater. 2017, 135, 177. https://doi.org/10.1016/j.actamat.2017.06.027.Suche in Google Scholar

11. Lee, C., Song, G., Gao, M. C., Feng, R., Chen, P., Brechtl, J., Chen, Y., An, K., Guo, W., Poplawsky, J. D., Li, S., Samaei, A. T., Chen, W., Hu, A., Choo, H., Liaw, P. K. Acta Mater. 2018, 160, 158. https://doi.org/10.1016/j.actamat.2018.08.053.Suche in Google Scholar

12. Esleben, K., Gorr, B., Christ, H.-J., Pritzel, C., Mukherji, D., Rösler, J., Beran, P., Strunz, P., Hoelzel, M., Gilles, R. Int. J. Mater. Res. 2019, 110, 1092. https://doi.org/10.3139/146.111855.Suche in Google Scholar

13. Du, W., Liu, N., Zhou, P., Wang, X., Wang, B., Peng, Z. Int. J. Mater. Res. 2018, 109, 844. https://doi.org/10.3139/146.111679.Suche in Google Scholar

14. Zhuang, Y. X., Liu, W. J., Xing, P. F., Wang, F., He, J. C. Acta Metall. Sin-EngL. 2012, 25, 124. https://doi.org/10.11890/1006-7191-122-124.Suche in Google Scholar

15. Li, P., Wang, S., Xia, Y. Q., Hao, X. H., Dong, H. G. J. Mater. Sci. Technol. 2020, 45, 59. https://doi.org/10.1016/j.jmst.2019.10.041.Suche in Google Scholar

16. Choudhuri, D., Shukla, S., Jannotti, P. A., Muskeri, S., Mukherjee, S., Lloyd, J. T., Mishra, R. S. Mater. Char. 2019, 158, 109955. https://doi.org/10.1016/j.matchar.2019.109955.Suche in Google Scholar

17. Chandan, A. K., Tripathy, S., Ghosh, M., Chowdhury, S. G. Metall. Mater. Trans. 2019, 50, 5079. https://doi.org/10.1007/s11661-019-05438-z.Suche in Google Scholar

18. Tunes, M. A., Vishnyakov, V. M. Mater. Des. 2019, 170, 107692. https://doi.org/10.1016/j.matdes.2019.107692.10.1016/j.matdes.2019.107692Suche in Google Scholar

19. Bai, L. H., Hu, Y. L., Liang, X. B., Tong, Y. G., Liu, J., Zhang, Z. B., Li, Y. J., Zhang, J. J. Alloys Compd. 2020, 857, 157542. https://doi.org/10.1016/j.jallcom.2020.157542.Suche in Google Scholar

20. Zhou, Y. J., Zhang, Y., Wang, X. F., Wang, Y. L., Chen, G. L. Rare Met. 2008, 27, 627. https://doi.org/10.1016/S1001-0521(08)60195-3.Suche in Google Scholar

21. Peng, H. Y., Kang, Z. X., Li, X. Z., Zhou, L., Long, Y. Mater. Sci. Eng. Powder Met. 2020, 25, 513. https://doi.org/10.3969/j.issn.1673-0224.2020.06.009.Suche in Google Scholar

22. Yao, Y. H., Liang, X. Y., Jin, Y. H., Wang, Z. P., Liu, J. N. Surf. Technol. 2020, 49, 224. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.06.027.Suche in Google Scholar

23. Chen, Y. N., Lyu, P., Zhang, S. Y., Zhang, C. L., Cai, J., Li, Y. X., Guan, Q. F. Surf. Technol. 2020, 49, 213. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.10.024.Suche in Google Scholar

24. Seol, J. B., Bae, J. W., Li, Z., Han, J. C., Kim, J. G, Raabe, D., Kim, H. S. Acta Mater. 2018, 151, 366. https://doi.org/10.1016/j.actamat.2018.04.004.Suche in Google Scholar

25. Hadraba, H., Chlup, Z., Dlouhy, A., Dobes, F., Roupcova, P., Vilemova, M., Matejicek, J. Mater. Sci. Eng. 2017, 689, 252. https://doi.org/10.1016/j.msea.2017.02.068.Suche in Google Scholar

26. Lin, S. Y., Chang, S. Y., Chang, C.-J., Huang, Y.-C. Entropy 2014, 16, 405. https://doi.org/10.3390/e16010405.Suche in Google Scholar

27. Cao, L. G., Zhu, L., Zhang, L. L., Wang, H., Cui, Y., Yang, Y., Liu, F. B. Chin. J. Mater. Res. 2019, 33, 650. https://doi.org/10.11901/1005.3093.2019.069.Suche in Google Scholar

28. Hassan, M. A., Yehia, H. M., Mohamed, A. S. A., El-Nikhaily, A. E., Elkady, O. A. Crystals 2021, 11, 540. https://doi.org/10.3390/cryst11050540.Suche in Google Scholar

29. Ang, A. S. M., Berndt, C. C., Sesso, M. L., Anupam, A., Praveen, S., Kottada, R. S., Murty, B. S. Metall. Mater. Trans. 2015, 46, 791. https://doi.org/10.1007/s11661-014-2644-z.Suche in Google Scholar

30. Geng, Y. S., Tan, H., Wang, L., Tieu, A. K., Chen, J., Cheng, J., Yang, J. Tribol. Int. 2021, 154, 106662. https://doi.org/10.1016/j.triboint.2020.106662.Suche in Google Scholar

31. Shi, Y. Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K. A., Liaw, P. K. Corrosion Sci. 2017, 119, 33. https://doi.org/10.1016/j.corsci.2017.02.019.Suche in Google Scholar

32. Aizenshtein, M., Strumza, E., Brosh, E., Hayun, S. Mater. Char. 2021, 171, 110738. https://doi.org/10.1016/j.matchar.2020.110738.Suche in Google Scholar

33. Yang, H. X., Li, J. S., Pan, X. Y., Yi, W. W., Kou, H. C., Wang, J. J. Mater. Sci. Technol. 2021, 72, 1. https://doi.org/10.1016/j.jmst.2020.02.069.Suche in Google Scholar

34. Wen, S. Z., Huang, P. Principle of Tribology; Wiley: New Jersey, 2017.10.1002/9781119214908Suche in Google Scholar

35. Zhang, A. J., Han, J. S., Su, B., Meng, J. H. Tribology 2017, 37, 776. https://doi.org/10.16078/j.tribology.2017.06.008.Suche in Google Scholar

36. Lin, C. M., Tsai, H.-L. Intermetallics 2011, 19, 288. https://doi.org/10.1016/j.intermet.2010.10.008.Suche in Google Scholar

37. Tang, Q. H., Zhao, Y. G., Cai, J. B., Nonferr, P. Q. D. Metal. Extr. Metall. 2011, 4, 47. https://doi.org/10.3969/j.issn.1007-7545.2011.04.014.Suche in Google Scholar

38. Abbaszadeh, S., Pakseresht, A., Omidvar, H., Shafiei, A. Surf. Interfaces. 2020, 21, 100724. https://doi.org/10.1016/j.surfin.2020.100724.Suche in Google Scholar

39. Liu, C., Peng, W. Y., Jiang, C. S., Guo, H. M., Tao, J., Deng, X. H., Chen, Z. X. J. Mater. Sci. Technol. 2019, 35, 1175. https://doi.org/10.1016/j.jmst.2018.12.014.Suche in Google Scholar

40. Shang, J. L., Cheng, C. Q., Wang, R., Zhu, Z. C., Zhou, J. Mater. Mech. Eng. 2014, 38, 72.Suche in Google Scholar

41. Munitz, A., Salhov, S., Hayun, S., Frage, N. J. Alloys Compd. 2016, 683, 221. https://doi.org/10.1016/j.jallcom.2016.05.034.Suche in Google Scholar

42. Guo, C. A., Zhao, Z. K., Zhao, S., Lu, F. S., Zhao, B. Y. J. Zhang: Mater. Rep. 2019, 33, 1462. https://doi.org/10.11896/cldb.18050104.Suche in Google Scholar

Received: 2021-11-03
Accepted: 2022-04-01
Published Online: 2022-07-21
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8633/html?lang=de
Button zum nach oben scrollen