Abstract
In this research, the wear behavior and microstructural transformation of approximately single face-centered cubic phase AlCoCrFeNi high-entropy alloy at elevated temperatures (∼25–600 °C) were investigated in detail. The combined action of environmental temperature and friction force can induce significant and regular transformation of the preferred orientation of crystalline grains at the high-entropy alloy friction interface. Generally as the temperature rises its principal wear mechanism varies fairly regularly from abrasive wear to delamination wear, and then to adhesive wear. It is worth noting that at a test temperature of 100 °C the wear debris formed during friction was rolled repeatedly and then separated by delamination, which played a pivotal role in inhibiting wear. Furthermore, five specific wear mechanisms of face-centered cubic phase high-entropy alloy at elevated temperatures have been elucidated through this study.
Acknowledgements
The authors appreciate the assistance of Engineer Jie Yan and Wenjun Qu in material performance and structure characterization, Dr. Yunxia Wang in high temperature friction test, and the financial support of Chinese Academy of Sciences for the research.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors do not have any conflicts of interest related to this article.
-
Data availability: The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.
References
1. Nishikawa, S., Nagata, K. Trans. Japan Inst. Met. 1976, 17, 277. https://doi.org/10.2320/matertrans1960.17.277.Suche in Google Scholar
2. Sun, Y. S., Wen, K. Z., Yuan, G. Y. Chin. J. Nonferr. Met. 1999, 1, 59. https://doi.org/10.3321/j.issn:1004-0609.1999.01.011.Suche in Google Scholar
3. Seikh, A. H., Baig, M., Singh, J. K., Mohammed, J. A., Luqman, M., Abdo, H. S., Khan, A. R Alharthi, N. H Coatings 2019, 9, 1. https://doi.org/10.3390/coatings9100686.Suche in Google Scholar
4. Greer, L. A. Nature 1993, 366, 303. https://doi.org/10.1038/366303a0.Suche in Google Scholar
5. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. https://doi.org/10.1002/adem.200300567.Suche in Google Scholar
6. Yeh, J.-W., Lin, S.-J., Chin, T.-S., Gan, J.-Y., Chen, S.-K., Shun, T.-T., Tsau, C.-H., Chou, S.-Y. Metall. Mater. Trans. 2004, 35, 2533. https://doi.org/10.1007/s11661-006-0234-4.Suche in Google Scholar
7. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Mater. Sci. Eng. 2004, 375, 213. https://doi.org/10.1016/j.msea.2003.10.257.Suche in Google Scholar
8. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. https://doi.org/10.1016/j.pmatsci.2013.10.001.Suche in Google Scholar
9. Zhang, L. S., Ma, G. L., Fu, L. C., Tian, J. Y. Adv. Mater. Res. 2013, 631, 227. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227.Suche in Google Scholar
10. Gorsse, S., Miracle, D. B., Senkov, O. N. Acta Mater. 2017, 135, 177. https://doi.org/10.1016/j.actamat.2017.06.027.Suche in Google Scholar
11. Lee, C., Song, G., Gao, M. C., Feng, R., Chen, P., Brechtl, J., Chen, Y., An, K., Guo, W., Poplawsky, J. D., Li, S., Samaei, A. T., Chen, W., Hu, A., Choo, H., Liaw, P. K. Acta Mater. 2018, 160, 158. https://doi.org/10.1016/j.actamat.2018.08.053.Suche in Google Scholar
12. Esleben, K., Gorr, B., Christ, H.-J., Pritzel, C., Mukherji, D., Rösler, J., Beran, P., Strunz, P., Hoelzel, M., Gilles, R. Int. J. Mater. Res. 2019, 110, 1092. https://doi.org/10.3139/146.111855.Suche in Google Scholar
13. Du, W., Liu, N., Zhou, P., Wang, X., Wang, B., Peng, Z. Int. J. Mater. Res. 2018, 109, 844. https://doi.org/10.3139/146.111679.Suche in Google Scholar
14. Zhuang, Y. X., Liu, W. J., Xing, P. F., Wang, F., He, J. C. Acta Metall. Sin-EngL. 2012, 25, 124. https://doi.org/10.11890/1006-7191-122-124.Suche in Google Scholar
15. Li, P., Wang, S., Xia, Y. Q., Hao, X. H., Dong, H. G. J. Mater. Sci. Technol. 2020, 45, 59. https://doi.org/10.1016/j.jmst.2019.10.041.Suche in Google Scholar
16. Choudhuri, D., Shukla, S., Jannotti, P. A., Muskeri, S., Mukherjee, S., Lloyd, J. T., Mishra, R. S. Mater. Char. 2019, 158, 109955. https://doi.org/10.1016/j.matchar.2019.109955.Suche in Google Scholar
17. Chandan, A. K., Tripathy, S., Ghosh, M., Chowdhury, S. G. Metall. Mater. Trans. 2019, 50, 5079. https://doi.org/10.1007/s11661-019-05438-z.Suche in Google Scholar
18. Tunes, M. A., Vishnyakov, V. M. Mater. Des. 2019, 170, 107692. https://doi.org/10.1016/j.matdes.2019.107692.10.1016/j.matdes.2019.107692Suche in Google Scholar
19. Bai, L. H., Hu, Y. L., Liang, X. B., Tong, Y. G., Liu, J., Zhang, Z. B., Li, Y. J., Zhang, J. J. Alloys Compd. 2020, 857, 157542. https://doi.org/10.1016/j.jallcom.2020.157542.Suche in Google Scholar
20. Zhou, Y. J., Zhang, Y., Wang, X. F., Wang, Y. L., Chen, G. L. Rare Met. 2008, 27, 627. https://doi.org/10.1016/S1001-0521(08)60195-3.Suche in Google Scholar
21. Peng, H. Y., Kang, Z. X., Li, X. Z., Zhou, L., Long, Y. Mater. Sci. Eng. Powder Met. 2020, 25, 513. https://doi.org/10.3969/j.issn.1673-0224.2020.06.009.Suche in Google Scholar
22. Yao, Y. H., Liang, X. Y., Jin, Y. H., Wang, Z. P., Liu, J. N. Surf. Technol. 2020, 49, 224. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.06.027.Suche in Google Scholar
23. Chen, Y. N., Lyu, P., Zhang, S. Y., Zhang, C. L., Cai, J., Li, Y. X., Guan, Q. F. Surf. Technol. 2020, 49, 213. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.10.024.Suche in Google Scholar
24. Seol, J. B., Bae, J. W., Li, Z., Han, J. C., Kim, J. G, Raabe, D., Kim, H. S. Acta Mater. 2018, 151, 366. https://doi.org/10.1016/j.actamat.2018.04.004.Suche in Google Scholar
25. Hadraba, H., Chlup, Z., Dlouhy, A., Dobes, F., Roupcova, P., Vilemova, M., Matejicek, J. Mater. Sci. Eng. 2017, 689, 252. https://doi.org/10.1016/j.msea.2017.02.068.Suche in Google Scholar
26. Lin, S. Y., Chang, S. Y., Chang, C.-J., Huang, Y.-C. Entropy 2014, 16, 405. https://doi.org/10.3390/e16010405.Suche in Google Scholar
27. Cao, L. G., Zhu, L., Zhang, L. L., Wang, H., Cui, Y., Yang, Y., Liu, F. B. Chin. J. Mater. Res. 2019, 33, 650. https://doi.org/10.11901/1005.3093.2019.069.Suche in Google Scholar
28. Hassan, M. A., Yehia, H. M., Mohamed, A. S. A., El-Nikhaily, A. E., Elkady, O. A. Crystals 2021, 11, 540. https://doi.org/10.3390/cryst11050540.Suche in Google Scholar
29. Ang, A. S. M., Berndt, C. C., Sesso, M. L., Anupam, A., Praveen, S., Kottada, R. S., Murty, B. S. Metall. Mater. Trans. 2015, 46, 791. https://doi.org/10.1007/s11661-014-2644-z.Suche in Google Scholar
30. Geng, Y. S., Tan, H., Wang, L., Tieu, A. K., Chen, J., Cheng, J., Yang, J. Tribol. Int. 2021, 154, 106662. https://doi.org/10.1016/j.triboint.2020.106662.Suche in Google Scholar
31. Shi, Y. Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K. A., Liaw, P. K. Corrosion Sci. 2017, 119, 33. https://doi.org/10.1016/j.corsci.2017.02.019.Suche in Google Scholar
32. Aizenshtein, M., Strumza, E., Brosh, E., Hayun, S. Mater. Char. 2021, 171, 110738. https://doi.org/10.1016/j.matchar.2020.110738.Suche in Google Scholar
33. Yang, H. X., Li, J. S., Pan, X. Y., Yi, W. W., Kou, H. C., Wang, J. J. Mater. Sci. Technol. 2021, 72, 1. https://doi.org/10.1016/j.jmst.2020.02.069.Suche in Google Scholar
34. Wen, S. Z., Huang, P. Principle of Tribology; Wiley: New Jersey, 2017.10.1002/9781119214908Suche in Google Scholar
35. Zhang, A. J., Han, J. S., Su, B., Meng, J. H. Tribology 2017, 37, 776. https://doi.org/10.16078/j.tribology.2017.06.008.Suche in Google Scholar
36. Lin, C. M., Tsai, H.-L. Intermetallics 2011, 19, 288. https://doi.org/10.1016/j.intermet.2010.10.008.Suche in Google Scholar
37. Tang, Q. H., Zhao, Y. G., Cai, J. B., Nonferr, P. Q. D. Metal. Extr. Metall. 2011, 4, 47. https://doi.org/10.3969/j.issn.1007-7545.2011.04.014.Suche in Google Scholar
38. Abbaszadeh, S., Pakseresht, A., Omidvar, H., Shafiei, A. Surf. Interfaces. 2020, 21, 100724. https://doi.org/10.1016/j.surfin.2020.100724.Suche in Google Scholar
39. Liu, C., Peng, W. Y., Jiang, C. S., Guo, H. M., Tao, J., Deng, X. H., Chen, Z. X. J. Mater. Sci. Technol. 2019, 35, 1175. https://doi.org/10.1016/j.jmst.2018.12.014.Suche in Google Scholar
40. Shang, J. L., Cheng, C. Q., Wang, R., Zhu, Z. C., Zhou, J. Mater. Mech. Eng. 2014, 38, 72.Suche in Google Scholar
41. Munitz, A., Salhov, S., Hayun, S., Frage, N. J. Alloys Compd. 2016, 683, 221. https://doi.org/10.1016/j.jallcom.2016.05.034.Suche in Google Scholar
42. Guo, C. A., Zhao, Z. K., Zhao, S., Lu, F. S., Zhao, B. Y. J. Zhang: Mater. Rep. 2019, 33, 1462. https://doi.org/10.11896/cldb.18050104.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde