Home Technology Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
Article
Licensed
Unlicensed Requires Authentication

Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures

  • Yidi Wang , Xiaoqian Li and Aimin Liang EMAIL logo
Published/Copyright: July 21, 2022

Abstract

In this research, the wear behavior and microstructural transformation of approximately single face-centered cubic phase AlCoCrFeNi high-entropy alloy at elevated temperatures (∼25–600 °C) were investigated in detail. The combined action of environmental temperature and friction force can induce significant and regular transformation of the preferred orientation of crystalline grains at the high-entropy alloy friction interface. Generally as the temperature rises its principal wear mechanism varies fairly regularly from abrasive wear to delamination wear, and then to adhesive wear. It is worth noting that at a test temperature of 100 °C the wear debris formed during friction was rolled repeatedly and then separated by delamination, which played a pivotal role in inhibiting wear. Furthermore, five specific wear mechanisms of face-centered cubic phase high-entropy alloy at elevated temperatures have been elucidated through this study.


Corresponding author: Aimin Liang, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, China; and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China, E-mail:

Acknowledgements

The authors appreciate the assistance of Engineer Jie Yan and Wenjun Qu in material performance and structure characterization, Dr. Yunxia Wang in high temperature friction test, and the financial support of Chinese Academy of Sciences for the research.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors do not have any conflicts of interest related to this article.

  4. Data availability: The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

1. Nishikawa, S., Nagata, K. Trans. Japan Inst. Met. 1976, 17, 277. https://doi.org/10.2320/matertrans1960.17.277.Search in Google Scholar

2. Sun, Y. S., Wen, K. Z., Yuan, G. Y. Chin. J. Nonferr. Met. 1999, 1, 59. https://doi.org/10.3321/j.issn:1004-0609.1999.01.011.Search in Google Scholar

3. Seikh, A. H., Baig, M., Singh, J. K., Mohammed, J. A., Luqman, M., Abdo, H. S., Khan, A. R Alharthi, N. H Coatings 2019, 9, 1. https://doi.org/10.3390/coatings9100686.Search in Google Scholar

4. Greer, L. A. Nature 1993, 366, 303. https://doi.org/10.1038/366303a0.Search in Google Scholar

5. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. https://doi.org/10.1002/adem.200300567.Search in Google Scholar

6. Yeh, J.-W., Lin, S.-J., Chin, T.-S., Gan, J.-Y., Chen, S.-K., Shun, T.-T., Tsau, C.-H., Chou, S.-Y. Metall. Mater. Trans. 2004, 35, 2533. https://doi.org/10.1007/s11661-006-0234-4.Search in Google Scholar

7. Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. Mater. Sci. Eng. 2004, 375, 213. https://doi.org/10.1016/j.msea.2003.10.257.Search in Google Scholar

8. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. https://doi.org/10.1016/j.pmatsci.2013.10.001.Search in Google Scholar

9. Zhang, L. S., Ma, G. L., Fu, L. C., Tian, J. Y. Adv. Mater. Res. 2013, 631, 227. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227.Search in Google Scholar

10. Gorsse, S., Miracle, D. B., Senkov, O. N. Acta Mater. 2017, 135, 177. https://doi.org/10.1016/j.actamat.2017.06.027.Search in Google Scholar

11. Lee, C., Song, G., Gao, M. C., Feng, R., Chen, P., Brechtl, J., Chen, Y., An, K., Guo, W., Poplawsky, J. D., Li, S., Samaei, A. T., Chen, W., Hu, A., Choo, H., Liaw, P. K. Acta Mater. 2018, 160, 158. https://doi.org/10.1016/j.actamat.2018.08.053.Search in Google Scholar

12. Esleben, K., Gorr, B., Christ, H.-J., Pritzel, C., Mukherji, D., Rösler, J., Beran, P., Strunz, P., Hoelzel, M., Gilles, R. Int. J. Mater. Res. 2019, 110, 1092. https://doi.org/10.3139/146.111855.Search in Google Scholar

13. Du, W., Liu, N., Zhou, P., Wang, X., Wang, B., Peng, Z. Int. J. Mater. Res. 2018, 109, 844. https://doi.org/10.3139/146.111679.Search in Google Scholar

14. Zhuang, Y. X., Liu, W. J., Xing, P. F., Wang, F., He, J. C. Acta Metall. Sin-EngL. 2012, 25, 124. https://doi.org/10.11890/1006-7191-122-124.Search in Google Scholar

15. Li, P., Wang, S., Xia, Y. Q., Hao, X. H., Dong, H. G. J. Mater. Sci. Technol. 2020, 45, 59. https://doi.org/10.1016/j.jmst.2019.10.041.Search in Google Scholar

16. Choudhuri, D., Shukla, S., Jannotti, P. A., Muskeri, S., Mukherjee, S., Lloyd, J. T., Mishra, R. S. Mater. Char. 2019, 158, 109955. https://doi.org/10.1016/j.matchar.2019.109955.Search in Google Scholar

17. Chandan, A. K., Tripathy, S., Ghosh, M., Chowdhury, S. G. Metall. Mater. Trans. 2019, 50, 5079. https://doi.org/10.1007/s11661-019-05438-z.Search in Google Scholar

18. Tunes, M. A., Vishnyakov, V. M. Mater. Des. 2019, 170, 107692. https://doi.org/10.1016/j.matdes.2019.107692.10.1016/j.matdes.2019.107692Search in Google Scholar

19. Bai, L. H., Hu, Y. L., Liang, X. B., Tong, Y. G., Liu, J., Zhang, Z. B., Li, Y. J., Zhang, J. J. Alloys Compd. 2020, 857, 157542. https://doi.org/10.1016/j.jallcom.2020.157542.Search in Google Scholar

20. Zhou, Y. J., Zhang, Y., Wang, X. F., Wang, Y. L., Chen, G. L. Rare Met. 2008, 27, 627. https://doi.org/10.1016/S1001-0521(08)60195-3.Search in Google Scholar

21. Peng, H. Y., Kang, Z. X., Li, X. Z., Zhou, L., Long, Y. Mater. Sci. Eng. Powder Met. 2020, 25, 513. https://doi.org/10.3969/j.issn.1673-0224.2020.06.009.Search in Google Scholar

22. Yao, Y. H., Liang, X. Y., Jin, Y. H., Wang, Z. P., Liu, J. N. Surf. Technol. 2020, 49, 224. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.06.027.Search in Google Scholar

23. Chen, Y. N., Lyu, P., Zhang, S. Y., Zhang, C. L., Cai, J., Li, Y. X., Guan, Q. F. Surf. Technol. 2020, 49, 213. https://doi.org/10.16490/j.cnki.issn.1001-3660.2020.10.024.Search in Google Scholar

24. Seol, J. B., Bae, J. W., Li, Z., Han, J. C., Kim, J. G, Raabe, D., Kim, H. S. Acta Mater. 2018, 151, 366. https://doi.org/10.1016/j.actamat.2018.04.004.Search in Google Scholar

25. Hadraba, H., Chlup, Z., Dlouhy, A., Dobes, F., Roupcova, P., Vilemova, M., Matejicek, J. Mater. Sci. Eng. 2017, 689, 252. https://doi.org/10.1016/j.msea.2017.02.068.Search in Google Scholar

26. Lin, S. Y., Chang, S. Y., Chang, C.-J., Huang, Y.-C. Entropy 2014, 16, 405. https://doi.org/10.3390/e16010405.Search in Google Scholar

27. Cao, L. G., Zhu, L., Zhang, L. L., Wang, H., Cui, Y., Yang, Y., Liu, F. B. Chin. J. Mater. Res. 2019, 33, 650. https://doi.org/10.11901/1005.3093.2019.069.Search in Google Scholar

28. Hassan, M. A., Yehia, H. M., Mohamed, A. S. A., El-Nikhaily, A. E., Elkady, O. A. Crystals 2021, 11, 540. https://doi.org/10.3390/cryst11050540.Search in Google Scholar

29. Ang, A. S. M., Berndt, C. C., Sesso, M. L., Anupam, A., Praveen, S., Kottada, R. S., Murty, B. S. Metall. Mater. Trans. 2015, 46, 791. https://doi.org/10.1007/s11661-014-2644-z.Search in Google Scholar

30. Geng, Y. S., Tan, H., Wang, L., Tieu, A. K., Chen, J., Cheng, J., Yang, J. Tribol. Int. 2021, 154, 106662. https://doi.org/10.1016/j.triboint.2020.106662.Search in Google Scholar

31. Shi, Y. Z., Yang, B., Xie, X., Brechtl, J., Dahmen, K. A., Liaw, P. K. Corrosion Sci. 2017, 119, 33. https://doi.org/10.1016/j.corsci.2017.02.019.Search in Google Scholar

32. Aizenshtein, M., Strumza, E., Brosh, E., Hayun, S. Mater. Char. 2021, 171, 110738. https://doi.org/10.1016/j.matchar.2020.110738.Search in Google Scholar

33. Yang, H. X., Li, J. S., Pan, X. Y., Yi, W. W., Kou, H. C., Wang, J. J. Mater. Sci. Technol. 2021, 72, 1. https://doi.org/10.1016/j.jmst.2020.02.069.Search in Google Scholar

34. Wen, S. Z., Huang, P. Principle of Tribology; Wiley: New Jersey, 2017.10.1002/9781119214908Search in Google Scholar

35. Zhang, A. J., Han, J. S., Su, B., Meng, J. H. Tribology 2017, 37, 776. https://doi.org/10.16078/j.tribology.2017.06.008.Search in Google Scholar

36. Lin, C. M., Tsai, H.-L. Intermetallics 2011, 19, 288. https://doi.org/10.1016/j.intermet.2010.10.008.Search in Google Scholar

37. Tang, Q. H., Zhao, Y. G., Cai, J. B., Nonferr, P. Q. D. Metal. Extr. Metall. 2011, 4, 47. https://doi.org/10.3969/j.issn.1007-7545.2011.04.014.Search in Google Scholar

38. Abbaszadeh, S., Pakseresht, A., Omidvar, H., Shafiei, A. Surf. Interfaces. 2020, 21, 100724. https://doi.org/10.1016/j.surfin.2020.100724.Search in Google Scholar

39. Liu, C., Peng, W. Y., Jiang, C. S., Guo, H. M., Tao, J., Deng, X. H., Chen, Z. X. J. Mater. Sci. Technol. 2019, 35, 1175. https://doi.org/10.1016/j.jmst.2018.12.014.Search in Google Scholar

40. Shang, J. L., Cheng, C. Q., Wang, R., Zhu, Z. C., Zhou, J. Mater. Mech. Eng. 2014, 38, 72.Search in Google Scholar

41. Munitz, A., Salhov, S., Hayun, S., Frage, N. J. Alloys Compd. 2016, 683, 221. https://doi.org/10.1016/j.jallcom.2016.05.034.Search in Google Scholar

42. Guo, C. A., Zhao, Z. K., Zhao, S., Lu, F. S., Zhao, B. Y. J. Zhang: Mater. Rep. 2019, 33, 1462. https://doi.org/10.11896/cldb.18050104.Search in Google Scholar

Received: 2021-11-03
Accepted: 2022-04-01
Published Online: 2022-07-21
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8633/html
Scroll to top button