Abstract
In this paper, the effect of composition and solution temperatures on microstructure, texture and mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys was investigated by means of optical microscopy, scanning electron microscopy, vickers hardness testing, tensile testing and electron backscatter diffraction analysis. The results indicate that the mechanical anisotropy can be reduced by increasing solution temperature and introducing iron-rich phases, in which equiaxed recrystallized grains and optimized texture distribution can be obtained, especially for the #1 alloy with the presence of iron-rich phases. Additionally, according to the evolution of microstructure and texture, the mechanism of recrystallization affected by solution temperature and iron-rich phases in the Al–Zn–Mg–Cu–Zr–Mn alloys was put forward. The relationship between mechanical anisotropy, microstructure and textures was also established in this paper.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: Unassigned
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the National Key Research and Development Program of China (2021YFE0115900), National Natural Science Foundation of China (Nos. 51871029, 51571023 and 51301016), Government Guided Program-Intergovernmental Bilateral Innovation Cooperation Project (No. BZ2019019), the Opening Project of State Key Lab of Advanced Metals and Materials (Nos. 2020-ZD02, 2022-Z03) and Industry-University Cooperation Collaborative Education Project (Nos. 202102437001, 202102437002).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Subodh, K., Green, J. A. S., Gilbert, J. The development of recycle-friendly automotive aluminum alloys. JOM 2007, 59, 47–51. https://doi.org/10.1007/s11837-007-0140-2.Search in Google Scholar
2. Michael, M., Wolverton, C., Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. https://doi.org/10.1039/c2ee21892e.Search in Google Scholar
3. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., Smet, P., Haszler, A., Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., Astruct. 2000, 280, 37–49. https://doi.org/10.1016/s0921-5093(99)00653-x.Search in Google Scholar
4. Burger, G. B., Gupta, A. K., JeiIrey, W., Lloyd, D. J. Microstructural control of aluminum sheet used in automotive applications. Mater. Char. 1995, 35, 23–39. https://doi.org/10.1016/1044-5803(95)00065-8.Search in Google Scholar
5. Williams, J. C., Edgar, A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023.Search in Google Scholar
6. Yoshida, K., Ishizaka, T., Kuroda, M., Ikawa, S. The effects of texture on formability of aluminum alloy sheets. Acta Mater. 2007, 55, 4499–4506. https://doi.org/10.1016/j.actamat.2007.04.014.Search in Google Scholar
7. Pedersen, K. O., Lademo, O. G., Berstad, T., Furu, T., Hopperstad, O. S. Influence of texture and grain structure on strain localisation and formability for AlMgSi alloys. J. Mater. Process. Technol. 2008, 200, 77–93. https://doi.org/10.1016/j.jmatprotec.2007.08.040.Search in Google Scholar
8. Cizek, J., Prochazka, I., Kuzel, R., Matej, Z., Cherkaska, V., Cieslar, M., Smola, B., Stulikova, I., Brauerb, G., Anwand, W., Islamgaliev, R. K., Kulyasova, O. Ultra fine-grained metals prepared by severe plastic deformation: a positron annihilation study. Acta Phys. Pol., A 2005, 107, 745–752. https://doi.org/10.12693/aphyspola.107.745.Search in Google Scholar
9. Lee, S. H., Saito, Y., Sakai, T., Utsunomiya, H. Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater. Sci. Eng., Astruct. 2002, 325, 228–235. https://doi.org/10.1016/s0921-5093(01)01416-2.Search in Google Scholar
10. Wang, H., Luo, Y. B., Friedman, P., Chen, M. H., Gao, L. Warm forming behavior of high strength aluminum alloy AA7075. T. Nonferr. Metal. Soc. 2012, 22, 1–7. https://doi.org/10.1016/s1003-6326(11)61131-x.Search in Google Scholar
11. Engler, O., Hirsch, J. Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-a review. Mater. Sci. Eng., Astruct. 2002, 336, 249–262. https://doi.org/10.1016/s0921-5093(01)01968-2.Search in Google Scholar
12. Engler, O. Modelling of microstructure and texture and the resulting properties during the thermo-mechanical processing of aluminium sheets. Mater. Sci. Forum 2006, 519–521, 1563–1568. https://doi.org/10.4028/www.scientific.net/MSF.519-521.1563.Search in Google Scholar
13. Hu, R., Ogura, T., Tezuka, H., Sato, T., Liu, Q. Dispersoid formation and recrystallization behavior in an Al-Mg-Si-Mn alloy. J. Mater. Sci. Technol. 2010, 26, 237–243. https://doi.org/10.1016/s1005-0302(10)60040-0.Search in Google Scholar
14. Li, G. J., Guo, M. X., Du, J. Q., Zhang, J. S., Zhuang, L. Z., Lavernia, E. J. Influence of precipitate-assisted nucleation on the microstructure and formability of Al-Mg-Si-Cu-Zn alloys. Philos. Mag. 2019, 99, 1335–1361. https://doi.org/10.1080/14786435.2019.1580400.Search in Google Scholar
15. Guo, M. X., Zhu, J., Zhang, Y., Li, G. J., Lin, T., Zhang, J. S., Zhuang, L. Z. The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability. Mater. Char. 2017, 132, 248–259. https://doi.org/10.1016/j.matchar.2017.08.013.Search in Google Scholar
16. Shakoori, M., Asgharzadeh, H., Kim, H. S. Microstructure plastic deformation and strengthening mechanisms of an Al-Mg-Si alloy with a bimodal grain structure. J. Alloys Compd. 2015, 632, 540–548. https://doi.org/10.1016/j.jallcom.2015.01.229.Search in Google Scholar
17. Cai, Y., Lang, Y., Cao, L., Zhang, J. Enhanced grain refinement in AA7050 Al alloy by deformation-induced precipitation. Mater. Sci. Eng., Astruct. 2012, 549, 100–104. https://doi.org/10.1016/j.msea.2012.04.011.Search in Google Scholar
18. Karimi, A., Karimi, K. Recent advantage in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. https://doi.org/10.1016/j.jallcom.2018.11.286.Search in Google Scholar
19. Liu, J., Yao, P., Zhao, N., Shi, C., Li, H., Li, X., Xi, D., Yang, S. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys. J. Alloys Compd. 2016, 657, 71–725. https://doi.org/10.1016/j.jallcom.2015.10.122.Search in Google Scholar
20. Pink, E., Kumar, S., Tian, B. Serrated flow of aluminum alloys influenced by precipitates. Mater. Sci. Eng., Astruct. 2000, 280, 17–24. https://doi.org/10.1016/s0921-5093(99)00650-4.Search in Google Scholar
21. Sidor, J. J., Kestens, L. A. I. Analytical description of rolling textures in face-centred-cubic metal. Scripta Mater. 2013, 68, 273–276. https://doi.org/10.1016/j.scriptamat.2012.10.039.Search in Google Scholar
22. Zhu, L. L., Lu, J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution. Int. J. Plast. 2012, 30, 166–184. https://doi.org/10.1016/j.ijplas.2011.10.003.Search in Google Scholar
23. Nonjabuliso, E., Ulyate, A. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy. Mater. Sci. Forum 2011, 690, 343–346. https://doi.org/10.4028/www.scientific.net/MSF.690.343.Search in Google Scholar
24. Senkov, O. N., Shagiev, M. R., Senkova, S. V., Miracle, D. B. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008, 56, 3723–3738. https://doi.org/10.1016/j.actamat.2008.04.005.Search in Google Scholar
25. Alpay, S. P., Gurbuz, R. Effect of aging on the fatigue crack growth kinetics of an Al-Zn-Mg-Cu alloy in two directions. Scripta Metall. Mater. 1994, 30, 423–427. https://doi.org/10.1016/0956-716X(94)90597-5.Search in Google Scholar
26. Cho, K. K., Chung, Y. H., Lee, C. W., Kwun, S. I., Shin, M. C. Effect of grain shape and texture on the earings in an Al-Li alloy. Scripta Mater. 2000, 43, 759–764. https://doi.org/10.1016/s1359-6462(00)00482-6.Search in Google Scholar
27. Sidor, J. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: experimental study and modeling. Int. J. Plast. 2015, 66, 119–137. https://doi.org/10.1016/j.ijplas.2014.08.009.Search in Google Scholar
28. SchaFer, C., Song, J., Gottstein, G. Modeling of texture evolution in the deformation zone of second-phase particles. Acta Mater. 2009, 57, 1026–1034. https://doi.org/10.1016/j.actamat.2008.10.052.Search in Google Scholar
29. Hines, J. A., Vecchio, K. S. Recrystallization kinetics within adiabatic shear bands. Acta Mater. 1997, 45, 635–649. https://doi.org/10.1016/s1359-6454(96)00193-0.10.1016/S1359-6454(96)00193-0Search in Google Scholar
30. Ferry, M., Jones, D. High-rate annealing of single-phase and particle-containing aluminium alloys. Scripta Mater. 1997, 38, 177–183. https://doi.org/10.1016/s1359-6462(97)00498-3.Search in Google Scholar
31. Doherty, R. D., Szpunar, J. A. Kinetics of sub-grain coalescence-A reconsideration of the theory. Acta Metall. 1984, 32, 1789–1798. https://doi.org/10.1016/0001-6160(84)90235-9.Search in Google Scholar
32. Doherty, R. D., Kashyap, K. Direct observation of the development of recrystallization texture in commercial purity aluminum. Acta Metall. Mater. 1993, 41, 3029–3053. https://doi.org/10.1016/0956-7151(93)90117-B.Search in Google Scholar
33. Bennett, T. A., Petrov, R. H., Kestens, L. A. I. Effect of particles on texture banding in an aluminium alloy. Scripta Mater. 2010, 62, 78–81. https://doi.org/10.1016/j.scriptamat.2009.09.032.Search in Google Scholar
34. Wang, X. F., Guo, M. X., Chapuis, A., Luo, J. R., Zhang, J. S., Zhuang, L. Z. Effect of solution time on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloys. Mater. Sci. Eng., Astruct. 2015, 644, 137–151. https://doi.org/10.1016/j.msea.2015.07.059.Search in Google Scholar
35. Engler, O. Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis. Mater. Sci. Technol. 1996, 12, 859–872. https://doi.org/10.1179/mst.1996.12.10.859.Search in Google Scholar
36. Benum, S., Nes, E. Effect of precipitation on the evolution of cube recrystallisation texture. Acta Mater. 1997, 45, 4593–4602. https://doi.org/10.1016/s1359-6454(97)00157-2.10.1016/S1359-6454(97)00157-2Search in Google Scholar
37. Engler, O. On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater. 1998, 46, 1555–1568. https://doi.org/10.1016/s1359-6454(97)00354-6.10.1016/S1359-6454(97)00354-6Search in Google Scholar
38. Kim, Y. S., Yang, S. H. Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material. Chin. J. Mech. Eng. 2017, 30, 625–631. https://doi.org/10.1007/s10033-017-0128-y.Search in Google Scholar
39. Kleiner, S., Uggowitzer, P. J. Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng., Astruct. 2004, 379, 258–263. https://doi.org/10.1016/j.msea.2004.02.020.Search in Google Scholar
40. Khan, S., Baig, M. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy. Int. J. Plast. 2011, 27, 522–538. https://doi.org/10.1016/j.ijplas.2010.08.001.Search in Google Scholar
41. Hu, J., Ikeda, K., Murakami, T. Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets. J. Mater. Process. Technol. 1998, 73, 49–56. https://doi.org/10.1016/s0924-0136(97)00211-2.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde