Startseite Technik The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys

  • Liangliang Yuan , Mingxing Guo EMAIL logo , Yutao Song ORCID logo , Lisha Miao , Ning Jiang und Linzhong Zhuang
Veröffentlicht/Copyright: 2. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the effect of composition and solution temperatures on microstructure, texture and mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys was investigated by means of optical microscopy, scanning electron microscopy, vickers hardness testing, tensile testing and electron backscatter diffraction analysis. The results indicate that the mechanical anisotropy can be reduced by increasing solution temperature and introducing iron-rich phases, in which equiaxed recrystallized grains and optimized texture distribution can be obtained, especially for the #1 alloy with the presence of iron-rich phases. Additionally, according to the evolution of microstructure and texture, the mechanism of recrystallization affected by solution temperature and iron-rich phases in the Al–Zn–Mg–Cu–Zr–Mn alloys was put forward. The relationship between mechanical anisotropy, microstructure and textures was also established in this paper.


Corresponding author: Mingxing Guo, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 100083, Beijing, P. R. China; and Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, 10083, Beijing, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Key Research and Development Program of China (2021YFE0115900), National Natural Science Foundation of China (Nos. 51871029, 51571023 and 51301016), Government Guided Program-Intergovernmental Bilateral Innovation Cooperation Project (No. BZ2019019), the Opening Project of State Key Lab of Advanced Metals and Materials (Nos. 2020-ZD02, 2022-Z03) and Industry-University Cooperation Collaborative Education Project (Nos. 202102437001, 202102437002).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Subodh, K., Green, J. A. S., Gilbert, J. The development of recycle-friendly automotive aluminum alloys. JOM 2007, 59, 47–51. https://doi.org/10.1007/s11837-007-0140-2.Suche in Google Scholar

2. Michael, M., Wolverton, C., Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. https://doi.org/10.1039/c2ee21892e.Suche in Google Scholar

3. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., Smet, P., Haszler, A., Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., Astruct. 2000, 280, 37–49. https://doi.org/10.1016/s0921-5093(99)00653-x.Suche in Google Scholar

4. Burger, G. B., Gupta, A. K., JeiIrey, W., Lloyd, D. J. Microstructural control of aluminum sheet used in automotive applications. Mater. Char. 1995, 35, 23–39. https://doi.org/10.1016/1044-5803(95)00065-8.Suche in Google Scholar

5. Williams, J. C., Edgar, A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023.Suche in Google Scholar

6. Yoshida, K., Ishizaka, T., Kuroda, M., Ikawa, S. The effects of texture on formability of aluminum alloy sheets. Acta Mater. 2007, 55, 4499–4506. https://doi.org/10.1016/j.actamat.2007.04.014.Suche in Google Scholar

7. Pedersen, K. O., Lademo, O. G., Berstad, T., Furu, T., Hopperstad, O. S. Influence of texture and grain structure on strain localisation and formability for AlMgSi alloys. J. Mater. Process. Technol. 2008, 200, 77–93. https://doi.org/10.1016/j.jmatprotec.2007.08.040.Suche in Google Scholar

8. Cizek, J., Prochazka, I., Kuzel, R., Matej, Z., Cherkaska, V., Cieslar, M., Smola, B., Stulikova, I., Brauerb, G., Anwand, W., Islamgaliev, R. K., Kulyasova, O. Ultra fine-grained metals prepared by severe plastic deformation: a positron annihilation study. Acta Phys. Pol., A 2005, 107, 745–752. https://doi.org/10.12693/aphyspola.107.745.Suche in Google Scholar

9. Lee, S. H., Saito, Y., Sakai, T., Utsunomiya, H. Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater. Sci. Eng., Astruct. 2002, 325, 228–235. https://doi.org/10.1016/s0921-5093(01)01416-2.Suche in Google Scholar

10. Wang, H., Luo, Y. B., Friedman, P., Chen, M. H., Gao, L. Warm forming behavior of high strength aluminum alloy AA7075. T. Nonferr. Metal. Soc. 2012, 22, 1–7. https://doi.org/10.1016/s1003-6326(11)61131-x.Suche in Google Scholar

11. Engler, O., Hirsch, J. Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications-a review. Mater. Sci. Eng., Astruct. 2002, 336, 249–262. https://doi.org/10.1016/s0921-5093(01)01968-2.Suche in Google Scholar

12. Engler, O. Modelling of microstructure and texture and the resulting properties during the thermo-mechanical processing of aluminium sheets. Mater. Sci. Forum 2006, 519–521, 1563–1568. https://doi.org/10.4028/www.scientific.net/MSF.519-521.1563.Suche in Google Scholar

13. Hu, R., Ogura, T., Tezuka, H., Sato, T., Liu, Q. Dispersoid formation and recrystallization behavior in an Al-Mg-Si-Mn alloy. J. Mater. Sci. Technol. 2010, 26, 237–243. https://doi.org/10.1016/s1005-0302(10)60040-0.Suche in Google Scholar

14. Li, G. J., Guo, M. X., Du, J. Q., Zhang, J. S., Zhuang, L. Z., Lavernia, E. J. Influence of precipitate-assisted nucleation on the microstructure and formability of Al-Mg-Si-Cu-Zn alloys. Philos. Mag. 2019, 99, 1335–1361. https://doi.org/10.1080/14786435.2019.1580400.Suche in Google Scholar

15. Guo, M. X., Zhu, J., Zhang, Y., Li, G. J., Lin, T., Zhang, J. S., Zhuang, L. Z. The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability. Mater. Char. 2017, 132, 248–259. https://doi.org/10.1016/j.matchar.2017.08.013.Suche in Google Scholar

16. Shakoori, M., Asgharzadeh, H., Kim, H. S. Microstructure plastic deformation and strengthening mechanisms of an Al-Mg-Si alloy with a bimodal grain structure. J. Alloys Compd. 2015, 632, 540–548. https://doi.org/10.1016/j.jallcom.2015.01.229.Suche in Google Scholar

17. Cai, Y., Lang, Y., Cao, L., Zhang, J. Enhanced grain refinement in AA7050 Al alloy by deformation-induced precipitation. Mater. Sci. Eng., Astruct. 2012, 549, 100–104. https://doi.org/10.1016/j.msea.2012.04.011.Suche in Google Scholar

18. Karimi, A., Karimi, K. Recent advantage in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. https://doi.org/10.1016/j.jallcom.2018.11.286.Suche in Google Scholar

19. Liu, J., Yao, P., Zhao, N., Shi, C., Li, H., Li, X., Xi, D., Yang, S. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys. J. Alloys Compd. 2016, 657, 71–725. https://doi.org/10.1016/j.jallcom.2015.10.122.Suche in Google Scholar

20. Pink, E., Kumar, S., Tian, B. Serrated flow of aluminum alloys influenced by precipitates. Mater. Sci. Eng., Astruct. 2000, 280, 17–24. https://doi.org/10.1016/s0921-5093(99)00650-4.Suche in Google Scholar

21. Sidor, J. J., Kestens, L. A. I. Analytical description of rolling textures in face-centred-cubic metal. Scripta Mater. 2013, 68, 273–276. https://doi.org/10.1016/j.scriptamat.2012.10.039.Suche in Google Scholar

22. Zhu, L. L., Lu, J. Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution. Int. J. Plast. 2012, 30, 166–184. https://doi.org/10.1016/j.ijplas.2011.10.003.Suche in Google Scholar

23. Nonjabuliso, E., Ulyate, A. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy. Mater. Sci. Forum 2011, 690, 343–346. https://doi.org/10.4028/www.scientific.net/MSF.690.343.Suche in Google Scholar

24. Senkov, O. N., Shagiev, M. R., Senkova, S. V., Miracle, D. B. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008, 56, 3723–3738. https://doi.org/10.1016/j.actamat.2008.04.005.Suche in Google Scholar

25. Alpay, S. P., Gurbuz, R. Effect of aging on the fatigue crack growth kinetics of an Al-Zn-Mg-Cu alloy in two directions. Scripta Metall. Mater. 1994, 30, 423–427. https://doi.org/10.1016/0956-716X(94)90597-5.Suche in Google Scholar

26. Cho, K. K., Chung, Y. H., Lee, C. W., Kwun, S. I., Shin, M. C. Effect of grain shape and texture on the earings in an Al-Li alloy. Scripta Mater. 2000, 43, 759–764. https://doi.org/10.1016/s1359-6462(00)00482-6.Suche in Google Scholar

27. Sidor, J. Evolution of recrystallization textures in particle containing Al alloys after various rolling reductions: experimental study and modeling. Int. J. Plast. 2015, 66, 119–137. https://doi.org/10.1016/j.ijplas.2014.08.009.Suche in Google Scholar

28. SchaFer, C., Song, J., Gottstein, G. Modeling of texture evolution in the deformation zone of second-phase particles. Acta Mater. 2009, 57, 1026–1034. https://doi.org/10.1016/j.actamat.2008.10.052.Suche in Google Scholar

29. Hines, J. A., Vecchio, K. S. Recrystallization kinetics within adiabatic shear bands. Acta Mater. 1997, 45, 635–649. https://doi.org/10.1016/s1359-6454(96)00193-0.10.1016/S1359-6454(96)00193-0Suche in Google Scholar

30. Ferry, M., Jones, D. High-rate annealing of single-phase and particle-containing aluminium alloys. Scripta Mater. 1997, 38, 177–183. https://doi.org/10.1016/s1359-6462(97)00498-3.Suche in Google Scholar

31. Doherty, R. D., Szpunar, J. A. Kinetics of sub-grain coalescence-A reconsideration of the theory. Acta Metall. 1984, 32, 1789–1798. https://doi.org/10.1016/0001-6160(84)90235-9.Suche in Google Scholar

32. Doherty, R. D., Kashyap, K. Direct observation of the development of recrystallization texture in commercial purity aluminum. Acta Metall. Mater. 1993, 41, 3029–3053. https://doi.org/10.1016/0956-7151(93)90117-B.Suche in Google Scholar

33. Bennett, T. A., Petrov, R. H., Kestens, L. A. I. Effect of particles on texture banding in an aluminium alloy. Scripta Mater. 2010, 62, 78–81. https://doi.org/10.1016/j.scriptamat.2009.09.032.Suche in Google Scholar

34. Wang, X. F., Guo, M. X., Chapuis, A., Luo, J. R., Zhang, J. S., Zhuang, L. Z. Effect of solution time on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloys. Mater. Sci. Eng., Astruct. 2015, 644, 137–151. https://doi.org/10.1016/j.msea.2015.07.059.Suche in Google Scholar

35. Engler, O. Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis. Mater. Sci. Technol. 1996, 12, 859–872. https://doi.org/10.1179/mst.1996.12.10.859.Suche in Google Scholar

36. Benum, S., Nes, E. Effect of precipitation on the evolution of cube recrystallisation texture. Acta Mater. 1997, 45, 4593–4602. https://doi.org/10.1016/s1359-6454(97)00157-2.10.1016/S1359-6454(97)00157-2Suche in Google Scholar

37. Engler, O. On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater. 1998, 46, 1555–1568. https://doi.org/10.1016/s1359-6454(97)00354-6.10.1016/S1359-6454(97)00354-6Suche in Google Scholar

38. Kim, Y. S., Yang, S. H. Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material. Chin. J. Mech. Eng. 2017, 30, 625–631. https://doi.org/10.1007/s10033-017-0128-y.Suche in Google Scholar

39. Kleiner, S., Uggowitzer, P. J. Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng., Astruct. 2004, 379, 258–263. https://doi.org/10.1016/j.msea.2004.02.020.Suche in Google Scholar

40. Khan, S., Baig, M. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy. Int. J. Plast. 2011, 27, 522–538. https://doi.org/10.1016/j.ijplas.2010.08.001.Suche in Google Scholar

41. Hu, J., Ikeda, K., Murakami, T. Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets. J. Mater. Process. Technol. 1998, 73, 49–56. https://doi.org/10.1016/s0924-0136(97)00211-2.Suche in Google Scholar

Received: 2020-09-18
Revised: 2022-06-08
Accepted: 2022-03-31
Published Online: 2022-08-02
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8089/html
Button zum nach oben scrollen