Startseite Annealing effect of scratch characteristics of ZnMgO epilayers on R-plane sapphire
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Annealing effect of scratch characteristics of ZnMgO epilayers on R-plane sapphire

  • Hua-Chiang Wen EMAIL logo , Ming-Chu Hsieh , Yu-Pin Lan und Wu-Ching Chou EMAIL logo
Veröffentlicht/Copyright: 19. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The nanotribological properties of Zn0.75Mg0.25O grown on R-plane sapphire using metal-organic vapor-phase epitaxy at different substrate temperatures (RT, 600, 700 and 800 °C) were investigated. A slight sliding track was observed at ramped loads of 250 μN, and an obvious bulge edge surrounding the groove was observed at ramped loads of 1 000 μN. Because of the annealing treatment, all the Zn0.75Mg0.25O coatings showed a reconstruction phenomenon of crystallites. The volumes of the bulge edges were as high as 30% in the annealed specimens and were larger than the volumes of the RT-treated specimens when ramped loads of 1 000 μN were applied. Under frictional loading, atomic force microscopy examination of scratch-tested films indicated lower bonding forces on R-plane sapphire than M-plane sapphire.


W. C. Chou Department of Electrophysics National Chiao Tung University 1001 University Road Hsinchu Taiwan 300 ROC (Fax) +886 (3) 5725230 (Tel.) + 886 (3) 5712121 Ext. 56129
H. C. Wen Department of Electrophysics National Chiao Tung University 1001 University Road Hsinchu Taiwan 300 ROC (Fax) +886 (3) 5725230 (Tel.) + 886 (3) 5712121 Ext. 56109

References

[1] A. Janotti, C.G. Van de Walle: Rep. Prog. Phys. 72 (2009) 126501. DOI:10.1088/0034-4885/72/12/12650110.1088/0034-4885/72/12/126501Suche in Google Scholar

[2] M.N.H. Mia, M.F. Pervez, M. Khalid Hossain, M. Reefaz Rahman, M. Jalal Uddin, M.A. Al Mashud, H.K. Ghosh, Mahbubul Hoq: Results Phys. 7 (2017) 2683. DOI:10.1016/j.rinp.2017.07.04710.1016/j.rinp.2017.07.047Suche in Google Scholar

[3] P. Ding, X. Pan, J. Huang, B. Lu, H. Zhang, W. Chen, Z. Ye: Mater. Lett. 71 (2012) 18. DOI:10.1016/j.matlet.2011.12.03010.1016/j.matlet.2011.12.030Suche in Google Scholar

[4] H.C. Wen, W.C. Chou, T.Y. Chiang, W.C. Fan, L. Lee: Tribol. Lett. 58 (2015) 26. DOI:10.1007/s11249-015-0499-010.1007/s11249-015-0499-0Suche in Google Scholar

[5] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan: Appl. Phys. Lett. 80 (2002) 1529. DOI: org/10.1063/1.1456266org/10.1063/1.1456266Suche in Google Scholar

[6] F. Alem, O. Ledyaev, R. Miller, V. Beletsky, A. Osinsky, W. V. Schoenfeld: J Cryst. Growth 435 (2016) 6. DOI: org/10.1016/j.jcrysgro.2015.11.012org/10.1016/j.jcrysgro.2015.11.012Suche in Google Scholar

[7] Z.G. Ju, C.X. Shan,D.Y. Jiang, J.Y. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, X.W. Fan: Appl. Phys. Lett. 93 (2008) 173505. DOI: org/10.1063/1.3002371org/10.1063/1.3002371Suche in Google Scholar

[8] S. Han, D.Z. Shen, J.Y. Zhang, Y.M. Zhao, D.Y. Jiang, Z.G. Ju, D.X. Zhao, B. Yao: Vacuum 84 (2010) 1149. DOI: org/10.1016/j.vacuum.2010.01.053org/10.1016/j.vacuum.2010.01.053Suche in Google Scholar

[9] S.K. Han, S.K. Hong, J.W. Lee, J.Y. Lee, J.H. Song, Y.S. Nam, S.K. Chang, T. Minegishi, T. Yao: J. Cryst. Growth 309 (2007) 121. DOI: org/10.1016/j.jcrysgro.2007.09.025org/10.1016/j.jcrysgro.2007.09.025Suche in Google Scholar

[10] M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S. P. DenBaars: Appl. Phys. Lett. 81 (2002) 469. DOI: org/10.1063/1.1493220org/10.1063/1.1493220Suche in Google Scholar

[11] H.C. Wen, W.C. Chou, S.H. Lin: Microelectron. Reliab. 79 (2017) 270. DOI:10.1016/j.microrel.2017.05.03710.1016/j.microrel.2017.05.037Suche in Google Scholar

[12] H.C. Wen, C.S. Yang, W.C. Chou: Appl. Sur. Sci. 256 (2010) 2128. DOI:10.1016/j.apsusc.2009.09.05910.1016/j.apsusc.2009.09.059Suche in Google Scholar

[13] H.C. Wen, W.C. Chou, W.H. Yau, W.C. Fan, L. Lee, K.F Jian: J. Alloys Compound. 625 (2015) 52. DOI:10.1016/j.jallcom.2014.10.16210.1016/j.jallcom.2014.10.162Suche in Google Scholar

[14] M.H. Lin, H. C. Wen, Y. R. Jeng, C.P. Chou: Nanoscale Res. Lett. 5 (2010) 1557 1812. DOI:10.1007/s11671-010-9717-810.1007/s11671-010-9717-8Suche in Google Scholar PubMed PubMed Central

[15] M.H. Lin, H.C. Wen, C.Y. Huang, Y.R. Jeng, W.F. Wu, C.P. Chou: Appl. Surf. Sci. 256 (2010) 3464. DOI: org/10.1016/j.ap-susc.2009.12.054org/10.1016/j.ap-susc.2009.12.054Suche in Google Scholar

[16] W.K. Wang, H.C. Wen, C.H. Cheng, W.C. Chou, W.H. Yau, C.H. Hung, C.P. Chou: J. Phys. Chem. Solids 75 (2014) 334. DOI: org/10.1016/j.jpcs.2013.09.016org/10.1016/j.jpcs.2013.09.016Suche in Google Scholar

[17] W.K. Wang, H.C. Wen, C.H. Cheng, W.C. Chou, W. H. Yau, C. H. Hung, C.P. Chou: Microelectron. Reliab. 54 (2014) 2754. DOI: org/10.1016/j.microrel.2014.07.148org/10.1016/j.microrel.2014.07.148Suche in Google Scholar

[18] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen: Appl. Phys. Lett. 80 (2002) 1529. DOI: org/10.1063/1.1456266org/10.1063/1.1456266Suche in Google Scholar

[19] T.Y. Lin, H.C. Wen, Z.C. Chang, W.K. Hsu, C.P. Chou, C.H. Tsai, D. Lian: J. Phys. Chem. Solids 72 (2011) 789. DOI:10.1016/j.jpcs.2010.10.03410.1016/j.jpcs.2010.10.034Suche in Google Scholar

[20] M.J. Wu, H.C. Wen, S.C.Wu,P.F. Yang, Y.S. Lai, W.K. Hsu, W.F. Wu, C.P. Chou: Microelectron. Reliab. 51 (2011) 2223. DOI:10.1016/j.microrel.2010.09.00810.1016/j.microrel.2010.09.008Suche in Google Scholar

Received: 2020-03-06
Accepted: 2020-09-25
Published Online: 2021-02-19

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-7766/html
Button zum nach oben scrollen