Effect of TiB2 addition on the microstructural, electrical, and mechanical behavior of Cu–TiB2 composites processed via spark plasma sintering
Abstract
In this investigation, copper–TiB2 metal matrix composites were fabricated by spark plasma sintering. The effect of TiB2 (2.5, 5, 7.5, and 10 wt.%) additions on the microstructural, electrical, and mechanical properties of the composites was investigated. There was a remarkable reduction in processing time and temperature by this process as compared to conventional sintering. Scanning electron microscopy with energy dispersive X-ray spectroscopy elemental maps revealed a homogeneous distribution of TiB2 in the copper matrix. The hardness of the composites exhibited no consistent trend with the addition of TiB2. An improvement in tensile strength was observed at the expense of ductility. Electrical conductivity showed a decreasing trend. Morphology of the fracture surfaces was analyzed to predict the nature of failure under tensile load.
References
[1] M.R. Akbarpour, E. Salahi, F.A. Hesari, E.Y. Yoon, H.S. Kim, A. Simchi: Mater. Sci. Eng. A. 568 (2013) 33–39. DOI:10.1016/j.msea.2013.01.01010.1016/j.msea.2013.01.010Search in Google Scholar
[2] J. Wang, R. Zhang, J. Xu, C. Wua, P. Chen: Mater. Des. 47 (2013) 667–671. DOI:10.1016/j.matdes.2013.01.00810.1016/j.matdes.2013.01.008Search in Google Scholar
[3] C.P. Samal, J.S. Parihar, D. Chaira: J. Alloys Compd. 569 (2013) 95–101. DOI:10.1016/j.jallcom.2013.03.12210.1016/j.jallcom.2013.03.122Search in Google Scholar
[4] J. Li, L. Zhang, J. Xiao, K. Zhou: Trans. Nonferrous Met. Soc. China 25 (2015) 3354 –3362. DOI:10.1016/S1003-6326(15)63970-X10.1016/S1003-6326(15)63970-XSearch in Google Scholar
[5] G. Celebi, I. Altinsoy, T. Yener, M. Ipek, S. Zeytin, C. Bindal: Vacuum. 85 (2010) 643 –647. DOI:10.1016/j.vacuum.2010.09.00910.1016/j.vacuum.2010.09.009Search in Google Scholar
[6] H. Sarmadi, A.H. Kokabi, S.M. Reihani: Wear 304 (2013) 1–12. DOI:10.1016/j.wear.2013.04.02310.1016/j.wear.2013.04.023Search in Google Scholar
[7] C. Vincent, J.F. Silvain, J.M. Heintz, N. Chandra: J. Phys Chem Solids. 73 (2012) 499–504. DOI:10.1016/j.jpcs.2011.11.03310.1016/j.jpcs.2011.11.033Search in Google Scholar
[8] H. Bai, C. Xue, J.L. Lyu, J. Li, G.X. Chen, J.H. Yu, C.T. Lin, D.J. Lv, L.M. Xiong: Compos. Part A Appl. Sci. Manuf. (2017). DOI: 10.1016/j.compositesa.2017.11.01910.1016/j.compositesa.2017.11.019Search in Google Scholar
[9] S. Mula, J. Panigrahi, P.C. Kang, C.C. Koch: J. Alloys Compd. 588 (2014) 710–715. DOI:10.1016/j.jallcom.2013.11.22210.1016/j.jallcom.2013.11.222Search in Google Scholar
[10] G. Celebi, M. Ipek, S. Zeytin, C. Bindal: Compos. B. Eng. 43 (2012) 1813–1822. DOI: 10.1016/j.compositesb.2012.01.00610.1016/j.compositesb.2012.01.006Search in Google Scholar
[11] C. Ayyappadas, A. Muthuchamy, N. Kumar, D.K. Agrawal, A.R. Annamalai: Mater. Res. Express 6 (2019) 066573. DOI:10.1088/2053-1591/ab102710.1088/2053-1591/ab1027Search in Google Scholar
[12] F. Akhtara, S.J. Askaria, K.A. Shah, X. Du, S. Guo: Mater. Charact. 60 (2009) 327–336. DOI:10.1016/j.matchar.2008.09.01410.1016/j.matchar.2008.09.014Search in Google Scholar
[13] J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstrus´, B. Kania, P. Bobrowski, J. Stolarska: Mater. Sci. Eng. A. 628 (2015)124–134. DOI:10.1016/j.msea.2015.01.01810.1016/j.msea.2015.01.018Search in Google Scholar
[14] M.R. Akbarpour, S. Alipour: Ceram. Int. (, 2017). DOI:10.1016/j.ceramint.2017.07.03710.1016/j.ceramint.2017.07.037Search in Google Scholar
[15] K. Biswas, A.S. Sharmaa, B. Basu: Scr. Mater. (2013). DOI:10.1016/j.scriptamat.2013.02.04610.1016/j.scriptamat.2013.02.046Search in Google Scholar
[16] N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, P.V. Venkitakrishnan: Mater. Sci. Eng. A. (2016). DOI:10.1016/j.msea.2016.10.11410.1016/j.msea.2016.10.114Search in Google Scholar
[17] P. Yih, D.D.L. Chung: J. Mater. Sci. 32 (1997) 1703–1709. DOI:10.1023/A:101851571468710.1023/A:1018515714687Search in Google Scholar
[18] C. Zou, Z. Chen, H. Kang, W. Wang, R. Li, T. Li, T. Wang: Wear (2017). DOI:10.1016/j.wear.2017.09.01610.1016/j.wear.2017.09.016Search in Google Scholar
[19] I. Dinaharana, S. Saravanakumar, K. Kalaiselvan, S. Gopalakrishnan: J. Asian Ceram. Soc. (2017). DOI:10.1016/j.jascer.2017.06.00210.1016/j.jascer.2017.06.002Search in Google Scholar
[20] P. Sadowski, K.K. Gajewska, S. Stupkiewicz: Compos. B. Eng. 80 (2015) 278–290. DOI: 10.1016/j.compositesb.2015.06.00710.1016/j.compositesb.2015.06.007Search in Google Scholar
[21] D. Zhang, Z. Zhan: J. Alloys Compd. 654 (2016) 226 –233. DOI:10.1016/j.jallcom.2015.09.01310.1016/j.jallcom.2015.09.013Search in Google Scholar
[22] K. Rajkumar, S. Aravindan: J. Mater. Process. Technol. 209 (2009) 5601–5605. DOI:10.1016/j.jmatprotec.2009.05.01710.1016/j.jmatprotec.2009.05.017Search in Google Scholar
[23] C. Ayyappadas, A.R. Annamalai, D.K. Agrawal, A. Muthuchamy: Metall. Res. Technol. (2017)114, 506. DOI:10.1051/metal/201703310.1051/metal/2017033Search in Google Scholar
[24] S.K. Thakur, T.S. Kong, M. Gupta: Mater. Sci. Eng. A. 452–453 (2007) 61–69. DOI:10.1016/j.msea.2006.10.15610.1016/j.msea.2006.10.156Search in Google Scholar
[25] M. Pellizzari, G. Cipolloni: Materials. 13 (2020) 2602. PMid:32517365; DOI:10.3390/ma1311260210.3390/ma13112602Search in Google Scholar
[26] J. Schmidt, M. Boehling, U. Burkhardt, Y. Grin: Sci. Technol. Adv. 8 (2007) 376–382. DOI:10.1016/j.stam.2007.06.00910.1016/j.stam.2007.06.009Search in Google Scholar
[27] D.H. Kwon, T.D. Nguyen, K.X. Huynh, P. Choi, M. Chang, Y. Yum, J. Kim, Y.S. Kwon: J. Ceram. Process. Res. 7 (2006) 275–279.Search in Google Scholar
[28] D.H. Kwon, T.D. Nguyen, D. Dudina, J. Kim, Y. Yum, Y. Kwon: Solid State Phenom. 119 (2007) 63–66. DOI: 10.4028/www.scientific.net/SSP.119.6310.4028/www.scientific.net/SSP.119.63Search in Google Scholar
[29] F. Akhtar, S.J. Askari, K.A. Shah, X. Du, S. Guo: Mater. Charact. 60 (2009) 327–336. DOI:10.1016/j.matchar.2008.09.01410.1016/j.matchar.2008.09.014Search in Google Scholar
[30] S.F. Moustafa, Z.A. Hamid, A.M. Elhay: Mater. Lett. 53 (2002) 244–249. DOI:10.1016/S0167-577X(01)00485-210.1016/S0167-577X(01)00485-2Search in Google Scholar
[31] C. Luo, Y. Wang, J. Xu, G. Xu, Z. Yan, J. Li, H. Li, H. Lu, J. Suo: J. Refract. Hard Met. 81 (2019) 27–35. DOI:10.1016/j.ijrmhm.2019.02.01510.1016/j.ijrmhm.2019.02.015Search in Google Scholar
[32] M. Tokita, S. Somiya (Ed). Academic Press. 2nd Edition. Japan (2013).Search in Google Scholar
[33] H. Hao, S. Ye, K. Yu, P. Chen, R. Gu, P. Yu: J. Alloys Compd. 684 (2016) 91–97. DOI:10.1016/j.jallcom.2016.05.14310.1016/j.jallcom.2016.05.143Search in Google Scholar
[34] M.S. Asl, A.S. Namini, A. Motallebzadeh, M. Azadbeh: Mater. Chem. Phys. (2017). DOI:10.1016/j.matchemphys.2017.09.06910.1016/j.matchemphys.2017.09.069Search in Google Scholar
[35] M. Eriksson, D. Salamon, M. Nygren, Z. Shen: Mater. Sci. Eng. A. 475 (2008) 101–104. DOI:10.1016/j.msea.2007.01.16110.1016/j.msea.2007.01.161Search in Google Scholar
[36] M. Pellizzari, G. Cipolloni: Wear 376–377 (2017) 958–967. DOI:10.1016/j.wear.2016.11.05010.1016/j.wear.2016.11.050Search in Google Scholar
[37] P. Zhao, Q. Li, R. Yi, Z. Wang, L. Lu, X. Cheng, S. Dong: J. Alloys Compd. (2018). DOI:10.1016/j.jallcom.2018.03.12210.1016/j.jallcom.2018.03.122Search in Google Scholar
[38] D. Janas and B. Liszka: Mater. Chem. Front. 2 (2018) 22–35. DOI:10.1039/C7QM00316A10.1039/C7QM00316ASearch in Google Scholar
[39] H. Singh, A. Raina, M.I. UlHaq: Mater. Today: Proc. 9 (2018) 17982–17988. DOI:10.1016/j.matpr.2018.06.13010.1016/j.matpr.2018.06.130Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- The influence of Cr, Al, Co, Fe and C on negative creep of Waspaloy
- Impact of Mo content on the microstructure– toughness relationship in the coarse-grained heat-affected zone of high-strength low-alloy steels
- Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy
- Effect of TiB2 addition on the microstructural, electrical, and mechanical behavior of Cu–TiB2 composites processed via spark plasma sintering
- Microstructure and mechanical characteristics of Cu-12.5Ni-5Sn-xFe sintered alloys
- Glass formation, magnetic properties, and electrical resistivity of the multi-component FeNbBCuNiCo amorphous alloys
- Electrochemical study of nickel nucleation mechanisms on glassy carbon at different pH values in an industrial electrolyte
- Structural, linear and non-linear optical properties of Cr-doped ZnO thin film for optoelectronics applications
- Annealing effect of scratch characteristics of ZnMgO epilayers on R-plane sapphire
- Review
- Development of high-insulating materials with aerogel for protective clothing applications – an overview
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Original Contributions
- The influence of Cr, Al, Co, Fe and C on negative creep of Waspaloy
- Impact of Mo content on the microstructure– toughness relationship in the coarse-grained heat-affected zone of high-strength low-alloy steels
- Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy
- Effect of TiB2 addition on the microstructural, electrical, and mechanical behavior of Cu–TiB2 composites processed via spark plasma sintering
- Microstructure and mechanical characteristics of Cu-12.5Ni-5Sn-xFe sintered alloys
- Glass formation, magnetic properties, and electrical resistivity of the multi-component FeNbBCuNiCo amorphous alloys
- Electrochemical study of nickel nucleation mechanisms on glassy carbon at different pH values in an industrial electrolyte
- Structural, linear and non-linear optical properties of Cr-doped ZnO thin film for optoelectronics applications
- Annealing effect of scratch characteristics of ZnMgO epilayers on R-plane sapphire
- Review
- Development of high-insulating materials with aerogel for protective clothing applications – an overview
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society