Abstract
The Cu-12.5Ni-5Sn-xFe alloys were prepared using powder metallurgy. The effect of the amount of Fe addition on the microstructure and mechanical characteristics of Cu-12.5Ni-5Sn-xFe alloys was investigated. The microstructure and morphology of alloys were examined by means of X-ray diffraction, scanning electron microscopy and cold field emission scanning electron microscope. Results indicate that the hardness and yield strength of the Cu-12.5Ni-5Sn alloy are improved by addition of trace amounts of Fe. The lamellar precipitates of Cu-12.5Ni-5Sn-xFe alloys are more and finer compared to those of Cu-12.5Ni-5Sn alloy. Fe can facilitate the aging process and strengthen the effect of aging-hardening.
References
[1] M.J. Diánez, E. Donoso, M.J. Sayagués, A. Perejón, P.E. SánchezJiménez, L.A. Pérez-Maqueda, J.M. Criado: J. Alloys Compd. 688 (2016) 288. DOI:10.1016/j.jallcom.2016.07.02110.1016/j.jallcom.2016.07.021Search in Google Scholar
[2] J.C. Zhao, M.R. Notis: Scr. Mater. 39 (1998) 1509. DOI:10.1016/S1359-6462(98)00341-810.1016/S1359-6462(98)00341-8Search in Google Scholar
[3] S. Zhang, B. Jiang, W. Ding: Wear 264 (2008) 199. DOI:10.1016/j.wear.2007.03.00310.1016/j.wear.2007.03.003Search in Google Scholar
[4] Y. Wang, L. Zhang, J.K. Xiao, W. Chen, C.F. Feng, X.P. Gan, K.C. Zhou: Tribol. Int. 94 (2016) 260. DOI:10.1016/j.triboint.2015.06.03110.1016/j.triboint.2015.06.031Search in Google Scholar
[5] S. Spooner, B.G. Lefevre: Metall. Trans. A 11 (1980) 1085. DOI:10.1007/BF0266813210.1007/BF02668132Search in Google Scholar
[6] B.G. Lefevre, A.T. D’annessa, D. Kalish: Metall. Trans. A 9 (1978) 577. DOI:10.1007/BF0264641510.1007/BF02646415Search in Google Scholar
[7] S.S. Kim, J.C. Rhu, Y.C. Jung, S.Z. Han, C.J. Kim: Scr. Mater. 40 (1998) 1. DOI:10.1016/S1359-6462(98)00400-X10.1016/S1359-6462(98)00400-XSearch in Google Scholar
[8] J.C. Rhu, S.S. Kim, Y.C. Jung, S.Z. Han, C.J. Kim: Metall. Mater. Trans. A 30 (1999) 2649. DOI:10.1007/s11661-999-0305-410.1007/s11661-999-0305-4Search in Google Scholar
[9] H. Zhang, Y.Z. He, X.M. Yuan, Y. Pan: Appl. Surf. Sci. 256 (2010) 5837. DOI:10.1016/j.apsusc.2010.03.05610.1016/j.apsusc.2010.03.056Search in Google Scholar
[10] G.W. Peng, X.P. Gan, Y.X. Jiang, Z. Li, K.C. Zhou: J. Alloys Compd. 718 (2017) 182. DOI:10.1016/j.jallcom.2017.05.12710.1016/j.jallcom.2017.05.127Search in Google Scholar
[11] J.C. Zhao, M.R. Notis: Acta Mater. 46 (1998) 4203. DOI:10.1016/S1359-6454(98)00095-010.1016/S1359-6454(98)00095-0Search in Google Scholar
[12] J. Caris, D. Li, J.J. Stephens Jr, J.J. Lewandowski: Mater. Sci. Eng., A 527 (2010) 769. DOI:10.1016/j.msea.2009.08.04910.1016/j.msea.2009.08.049Search in Google Scholar
[13] J. Caris, R. Varadarajan, J.J. Stephens Jr, J.J. Lewandowski: Mater. Sci. Eng., A 491 (2008) 137. DOI:10.1016/j.msea.2008.01.06110.1016/j.msea.2008.01.061Search in Google Scholar
[14] A. Das, V. Verma, C.B. Basak: Mater. Charact. 120 (2016) 152. DOI:10.1016/j.matchar.2016.08.02110.1016/j.matchar.2016.08.021Search in Google Scholar
[15] B. Alili, D. Bradai, P. Zieba: Mater. Charact. 59 (2008) 1526. DOI:10.1016/j.matchar.2008.01.00710.1016/j.matchar.2008.01.007Search in Google Scholar
[16] K. Vijayaraju, E.S. Dwarakadasa, J.H. Abboud: J. Mater. Sci. Lett. 4 (1985) 1111. DOI:10.1007/BF0072042910.1007/BF00720429Search in Google Scholar
[17] Y. Ouyang, X.P. Gan, S.Z. Zhang, Z. Li, K.C. Zhou, Y.X. Jiang, X.W. Zhang: Trans. Nonferrous Met. Soc. China 27 (2017) 1947. DOI:10.1016/S1003-6326(17)60219-X10.1016/S1003-6326(17)60219-XSearch in Google Scholar
[18] M. Gao, Z. Chen, H. Kang, R. Li, W. Wang, C. Zou, T. Wang: Mater. Sci. Eng., A 715 (2018) 340. DOI:10.1016/j.msea.2018.01.02210.1016/j.msea.2018.01.022Search in Google Scholar
[19] Y.H. Wang, M.P. Wang, B. Hong, Z. Li: Trans. Nonferrous Met. Soc. China 13 (2003) 1051. DOI:10.1007/BF0074193610.1007/BF00741936Search in Google Scholar
[20] W.S. Jeon, C.C. Shur, J.G. Kim, S.Z. Han, Y.S. Kim: J. Alloys Compd. 455 (2008) 358. DOI:10.1016/j.jallcom.2007.01.13910.1016/j.jallcom.2007.01.139Search in Google Scholar
[21] L.H. Zhang: Shanghai Nonferrous Met. 21 (2000) 112. DOI:10.3969/j.issn.1005-2046.2000.03.00310.3969/j.issn.1005-2046.2000.03.003Search in Google Scholar
[22] S.M. Du, X.C. Wang, Z. Li, Z.H. Yang, J.B. Wang: Materials. 11 (2018) 1108. DOI:10.3390/ma1107110810.3390/ma11071108Search in Google Scholar PubMed PubMed Central
[23] J.H. Jun: J. Alloys Compd. 725 (2017) 237. DOI:10.1016/j.jallcom.2017.07.14710.1016/j.jallcom.2017.07.147Search in Google Scholar
[24] L. Qiao, Z.B. Wang, J.C. Zhu: Mater. Sci. Eng., A 792 (2020) 139845. DOI:10.1016/j.msea.2020.13984510.1016/j.msea.2020.139845Search in Google Scholar
[25] C.J. Guo, J. Wan, J.S. Chen, X.P. Xiao, H. Huang, J.P. Liu, B. Yang: Mater. Sci. Eng., A 795 (2020) 13997. DOI:10.1016/j.msea.2020.13991710.1016/j.msea.2020.139917Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- The influence of Cr, Al, Co, Fe and C on negative creep of Waspaloy
- Impact of Mo content on the microstructure– toughness relationship in the coarse-grained heat-affected zone of high-strength low-alloy steels
- Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy
- Effect of TiB2 addition on the microstructural, electrical, and mechanical behavior of Cu–TiB2 composites processed via spark plasma sintering
- Microstructure and mechanical characteristics of Cu-12.5Ni-5Sn-xFe sintered alloys
- Glass formation, magnetic properties, and electrical resistivity of the multi-component FeNbBCuNiCo amorphous alloys
- Electrochemical study of nickel nucleation mechanisms on glassy carbon at different pH values in an industrial electrolyte
- Structural, linear and non-linear optical properties of Cr-doped ZnO thin film for optoelectronics applications
- Annealing effect of scratch characteristics of ZnMgO epilayers on R-plane sapphire
- Review
- Development of high-insulating materials with aerogel for protective clothing applications – an overview
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Original Contributions
- The influence of Cr, Al, Co, Fe and C on negative creep of Waspaloy
- Impact of Mo content on the microstructure– toughness relationship in the coarse-grained heat-affected zone of high-strength low-alloy steels
- Effect of Ag additions on the microstructure and phase transformations of Zn-22Al-2Cu (wt.%) alloy
- Effect of TiB2 addition on the microstructural, electrical, and mechanical behavior of Cu–TiB2 composites processed via spark plasma sintering
- Microstructure and mechanical characteristics of Cu-12.5Ni-5Sn-xFe sintered alloys
- Glass formation, magnetic properties, and electrical resistivity of the multi-component FeNbBCuNiCo amorphous alloys
- Electrochemical study of nickel nucleation mechanisms on glassy carbon at different pH values in an industrial electrolyte
- Structural, linear and non-linear optical properties of Cr-doped ZnO thin film for optoelectronics applications
- Annealing effect of scratch characteristics of ZnMgO epilayers on R-plane sapphire
- Review
- Development of high-insulating materials with aerogel for protective clothing applications – an overview
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society