Startseite Factors affecting cyclic lifetime of EB-PVD thermal barrier coatings with various bond coats
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Factors affecting cyclic lifetime of EB-PVD thermal barrier coatings with various bond coats

  • U. Schulz EMAIL logo , H. Lau , U. Rätzer-Scheibe und W. A. Kaysser
Veröffentlicht/Copyright: 16. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Standard EB-PVD (electron beam physical vapor deposition) thermal barrier coatings (TBCs) of partially yttria-stabilized zirconia were applied on Ni-base substrate alloys and thermally cycled with Tmax = 1100 °C. Two different bond coats were investigated: NiCoCrAlY and NiPtAl. The longest lifetimes have been achieved on the Hf-containing Rene142 substrate. A rough interface between TGO (thermally grown oxide) and bond coat with hafnia pegs is characteristic for these alloys. A bond coat heat treatment in Ar–H significantly improved the lifetime of the TBC system with IN100 + PtAl bond coats, whereas reduced lifetimes were found on IN100 + NiCoCrAlY. Spallation of the TBCs was correlated to TGO thickness and microstructure. The TGO growth is faster for NiCoCrAlY than for NiPtAl bond coats, while TBC lifetime is longer for the NiCoCrAlY systems. Tests with reduced cycle length yielded an increased number of cycles to failure for IN100+NiCoCrAlY, but left the time to failure at temperature unchanged. TBC thickness had only a limited influence on cyclic lifetime.

Abstract

Standard EB-PVD-Wärmedämmschichten (WDS) aus P-YSZ mit zwei unterschiedlichen Haftvermittlerschichten (NiCoCrAlY und NiPtAl) wurden auf verschiedenen Ni-Basislegierungen bei 1100 °C thermozykliert. Die längsten Lebensdauern wurden auf der Hf-haltigen Legierung Rene142 erzielt. Charakteristisch war hier eine raue Grenzfläche zwischen TGO und Haftvermittlerschicht mit Hafniumoxid-Pegs. Eine Glühung unter Ar–H verlängerte die Lebensdauer des Systems IN100 + PtAl erheblich, während auf IN100 + NiCoCrAlY dadurch die WDS-Lebensdauer verkürzt wurde. Das Versagen der Wärmedämmschichten durch Abplatzen wurde mit Dicke und Mikrostruktur des thermisch gewachsenen Oxids korreliert. Dieses wächst auf NiCoCrAlY-Haftvermittlerschichten schneller als auf NiPtAl-Schichten, wobei die Lebensdauer von Systemen mit NiCoCrAlY länger als von solchen mit NiPtAl war. Die Prüfung mit verkürzter Zykluslänge erhöhte beim System IN100 + NiCoCrAlY die Zahl der Zyklen bis zum Ausfall, die Gesamtzeit auf Hochtemperatur bis zum Ausfall blieb jedoch unverändert. Die Dicke der WDS hatte nahezu keinen Einfluss auf die Lebensdauer.


Dedicated to Professor Dr. Otmar Vöhringer on the occasion of his 65th birthday



Dr. Uwe Schulz DLR, Institut für Werkstoff-Forschung D-51147 Köln, Germany Tel.: +49 2203 601 2543 Fax: +49 2203 696 480

  1. The authors gratefully acknowledge careful manufacture and testing of the coatings by J. Brien, C. Kröder, H. Mangers, H. Schurmann, and W.-D. Zimmermann. J. Münzer and M. Menzebach contributed some of the TGO investigations, U. Leushake performed the short-cycle tests. The provision of the NiPtAl bond coats by MTU Aero Engines and the discussions with C. Friedrich there are gratefully acknowledged. Thanks to M. Peters, K. Fritscher, and Ch. Leyens for stimulating discussions.

References

[1] C. Leyens, U. Schulz, K. Fritscher, M. Bartsch, M. Peters, W.A. Kaysser: Z. Metallkd. 92 (2001) 762.10.1515/ijmr-2001-0142Suche in Google Scholar

[2] M. Peters, C. Leyens, U. Schulz, W.A. Kaysser: Adv. Eng. Mat. 3 (2001) 193.10.1002/1527-2648(200104)3:4<193::AID-ADEM193>3.0.CO;2-USuche in Google Scholar

[3] U. Schulz, M. Menzebach, C. Leyens, Y.Q. Yang: Surf. Coat. Technol. 146–147 (2001) 117.10.1016/S0257-8972(01)01481-5Suche in Google Scholar

[4] P. Morrell, D.S. Rickerby, in: Proc. 85th Meeting AGARD Structures and Materials Panel “Thermal Barrier Coatings”, Aalborg, Denmark, 15–16 October 1997, AGARD report 823, NATO (1998) 20.Suche in Google Scholar

[5] U. Kaden, C. Leyens, M. Peters, W.A. Kaysser, in: J.M. Hampikian, N.B. Dahotre (Eds.), Elevated Temperature Coatings: Science and Technology III, TMS, Warrendale, PA (1999) 27.Suche in Google Scholar

[6] J. Kimmel, Z. Mutasim, W. Brentnall: ASME, New York, 99-GT-350 (1999).Suche in Google Scholar

[7] K.E. Rostek, D. Löhe, O. Vöhringer: Mat. Corrosion 50 (1999) 417.10.1002/(SICI)1521-4176(199907)50:7<417::AID-MACO417>3.0.CO;2-XSuche in Google Scholar

[8] U. Schulz, K. Fritscher, C. Leyens, M. Peters, in: M. Singh, T. Jessen (Eds.), Ceramic Engineering and Science Proceedings 22 B, American Ceramic Society, Westerville, OH (2001) 347.10.1002/9780470294703.ch42Suche in Google Scholar

[9] G.M. Kim, N.M. Yanar, E.N. Hewitt, F.S. Pettit, G.H. Meier: Scripta Mater. 46 (2002) 489.10.1016/S1359-6462(02)00016-7Suche in Google Scholar

[10] A. Peichl, T. Beck, O. Vöhringer: Surf. Coat. Technol. 162 (2003) 113.10.1016/S0257-8972(02)00698-9Suche in Google Scholar

[11] M. Bartsch, K. Mull, C. Sick, in: As Ref. [8], 357.Suche in Google Scholar

[12] H. Lau, C. Leyens, U. Kaden, U. Schulz, J. Münzer, C. Friedrich, T. Cosack, in: Werkstoffwoche-Partnerschaft GbR, Proc. Materials Week 2001, Munich, Werkstoff-Informationsgesellschaft mbH, Frankfurt (2002) 1.Suche in Google Scholar

[13] H. Lau, C. Leyens, U. Schulz, C. Friedrich: Surf. Coat. Technol. 165 (2003) 217.10.1016/S0257-8972(02)00726-0Suche in Google Scholar

[14] K. Fritscher, U. Schulz, M. Schmücker, in: M. Schütze, W.J. Quadakkers (Eds.), Cyclic Oxidation of High Temperature Materials, The Institute of Materials, London (1999) 383.Suche in Google Scholar

[15] M. Gell, E. Jordan, K. Vaidnanathan, K. McCarron, B. Barber, Y.-H. Sohn, V.K. Tolpygo: Surf. Coat. Technol. 120–121 (1999) 53.10.1016/S0257-8972(99)00338-2Suche in Google Scholar

[16] J. Nesbitt, B. Nagaraj, J.Williams, in: N.B. Dahotre, J.M. Hampikian, J.E. Morral (Eds.), Proc. Elevated Temperature Coatings: Science and Technology IV, TMS, Warrendale, PA (2001) 77.Suche in Google Scholar

[17] D.R. Mumm, A.G. Evans: Acta Mater. 48(2000) 1815.10.1016/S1359-6454(99)00473-5Suche in Google Scholar

[18] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, F.S. Pettit: Progr. Mater. Sci. 46 (2001) 505.10.1016/S0079-6425(00)00020-7Suche in Google Scholar

[19] J.G. Goedjen, G.P. Wagner: ASME, New York, 96-GT-458 (1996).Suche in Google Scholar

[20] H.M. Tawancy, N. Sridhar, N.M. Abbas, D. Rickerby: J. Mat. Sci. 35 (2000) 3615.10.1023/A:1004825932601Suche in Google Scholar

[21] Z. Mutasim, C. Rimlinger, W. Brentnall, ASME, New York, 97-GT-531 (1997).Suche in Google Scholar

[22] J.A. Haynes, M.J. Lance, B.A. Pint, I.G. Wright, in: As Ref. [16], p. 29.Suche in Google Scholar

[23] N.M. Yanar, G.M. Kim, F.S. Pettit, G.H. Meier, in: N. Czech (Ed.), Proc. Advanced Coatings for High Temperature, Nice, April 17–19, 2002, Forum of Technology, (2002) 1.Suche in Google Scholar

[24] K. Fritscher et al., in: W.A. Kaysser (Ed.), Proc. Workshop HGF Gasturbine, Köln, February 17, 2000, DLR, Cologne (2000) 2.5.1.Suche in Google Scholar

[25] H.M. Choi, B.S. Kang, W.K. Choi, D.G. Choi, S.K. Choi, J.C. Kim, Y.K. Park, G.M. Kim: J. Mat. Sci. 33 (1998) 5895.10.1023/A:1004439123350Suche in Google Scholar

[26] U. Leushake: Ph. D. Thesis, RWTH Aachen (2001).Suche in Google Scholar

Received: 2002-11-08
Published Online: 2022-02-16

© 2003 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Articles/Aufsätze
  3. Bedeutung von Eigenspannungsabbau und mikrostrukturellen Veränderungen für die Lebensdauervorhersage schwingbeanspruchter Schweißverbindungen
  4. Factors affecting cyclic lifetime of EB-PVD thermal barrier coatings with various bond coats
  5. Depth-resolved X-ray residual stress analysis in PVD (Ti, Cr) N hard coatings
  6. Crystal orientation and residual stress in TiN film by synchrotron radiation
  7. Characterization of thermal and anodic oxide layers on β- and on near-β-titanium alloys for biomedical application
  8. Micromechanisms and modelling of crack initiation and growth in tool steels: role of primary carbides
  9. Fatigue crack nucleation at grain boundaries – experiment and simulation
  10. Fatigue and fracture-induced defect structures of metals investigated by positron microscopy
  11. Deformation and fracture of Nb/α-Al2O3 composites in compression and bending studied by optical methods
  12. Dislocation microstructures of single crystal ⟨001⟩ CMSX-4 specimens tensile tested at 700 and 1000°C
  13. Influence of mechanical surface treatments on the HCF performance of the Ni-superalloy Udimet 720 LI
  14. Precipitation of β-phase and twinning during deformation of Mg–Al alloy AZ91 at 150 °C after solution treatment
  15. Nanograin size, high-nitrogen austenitic stainless steels
  16. Der dynamische SD-Effekt und der Einfluss auf die Fließortkurve
  17. Einfluss der Umformgeschwindigkeit und -temperatur auf das Fließverhalten metallischer Werkstoffe
  18. Mean stress sensitivity of sintered iron and steel
  19. Thermozyklisches Kriechen einer kurzfaserverstärkten Aluminium-Kolbenlegierung
  20. Strength and ductility of thin Cu wires
  21. Modeling of deformation behavior of copper under equal channel angular pressing
  22. Reaktionssintern von AlMg–MgO zur Herstellung von Bauteilen auf Spinellbasis
  23. Determination of the local oxygen distribution in a commercial titanium alloy by 3-dimensional atom probe
  24. Phase diagram of the Al–Cu–Fe quasicrystal-forming alloy system
  25. Notifications/Mitteilungen
  26. Personal/Personelles
  27. Books/Bücher
  28. Conferences/Konferenzen
Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0113/html
Button zum nach oben scrollen