Startseite Preparation and characterization of double-coated probiotic bacteria via a fluid-bed process: a case study on Lactobacillus reuteri
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and characterization of double-coated probiotic bacteria via a fluid-bed process: a case study on Lactobacillus reuteri

  • Leila Zaghari , Alireza Basiri und Somayeh Rahimi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this research, a specific fluidized bed coater, Wurster, was used to double-coat Lactobacillus reuteri. The first layer of coating was shellac (16, 17 and 18% w/v) and sodium alginate (0.5, 1 and 1.5% w/v). The microcapsules coated by 1% sodium alginate showed the highest relative survival of bacteria (11.1%) after 1 h in simulated gastric conditions (pH 2) and was, therefore, selected as the first layer of the microcapsules. Chitosan (0.5, 1 and 1.5% w/v), and arabic gum (1.5, 3 and 6% w/v) were used for the second layer. The best second layer was determined on the basis of relative survival of bacteria after acidic (simulated gastric conditions) and heating (80 °C for 15 and 30 min) examinations. The results showed that the relative survival of bacteria in microcapsules with a second coat of 1% w/v chitosan was higher than the others in both acidic (11.6%) and heating (7.31% at 15 min and 0.63% at 30 min) conditions.


Corresponding author: Somayeh Rahimi, Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science and Technology, P. O. Box: 33535-111, Tehran, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yao, M, Xie, J, Du, H, McClements, DJ, Xiao, H, Li, L. Progress in microencapsulation of probiotics: a review. Compr Rev Food Sci F 2020;19:857–74. https://doi.org/10.1111/1541-4337.12532.Suche in Google Scholar

2. Cao, L, Xu, Q, Xing, Y, Guo, X, Li, W, Cai, Y. Effect of skimmed milk powder concentrations on the biological characteristics of microencapsulated Saccharomyces cerevisiae by vacuum-spray-freeze-drying. Dry Technol 2020;38:476–94. https://doi.org/10.1080/07373937.2019.1581797.Suche in Google Scholar

3. Poletto, G, Raddatz, GC, Cichoski, AJ, Zepka, LQ, Lopes, EJ, Barin, JS, et al. Study of viability and storage stability of Lactobacillus acidophillus when encapsulated with the prebiotics rice bran, inulin and Hi-maize. Food Hydrocolloid 2019;95:238–44. https://doi.org/10.1016/j.foodhyd.2019.04.049.Suche in Google Scholar

4. Turkmen, N, Akal, C, Özer, B. Probiotic dairy-based beverages: a review. J Funct Foods 2019;53:62–75. https://doi.org/10.1016/j.jff.2018.12.004.Suche in Google Scholar

5. Martín, MJ, Lara-Villoslada, F, Ruiz, MA, Morales, ME. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci and Emerg 2015;27:15–25. https://doi.org/10.1016/j.ifset.2014.09.010.Suche in Google Scholar

6. Strasser-Altrogge, SA. Innovative product formulations applying the fluidised bed technology. Doctoral thesis, Institut für Umweltbiotechnologie, Universität für Bodenkultur Wien, Austria; 2008.Suche in Google Scholar

7. Teunou, E, Poncelet, D. Batch and continuous fluid bed coating – review and state of the art. J Food Eng 2002;53:325–40. https://doi.org/10.1016/s0260-8774(01)00173-x.Suche in Google Scholar

8. Wurster, DE. Air-suspension technique of coating drug particles. A preliminary report. J Pharm Sci 1959;48:451–4. https://doi.org/10.1002/jps.3030480808.Suche in Google Scholar PubMed

9. Szafran, RG. Fluid-bed technology for encapsulation and coating purposes. In: Encapsulation nanotechnologies. Scrivener Publishing LLC. All; 2013.10.1002/9781118729175.ch3Suche in Google Scholar

10. Bevilacqua, A, Speranza, B, Santillo, A, Albenzio, M, Gallo, M, Sinigaglia, M, et al. Alginate-microencapsulation of Lactobacillus casei and Bifidobacterium bifidum: performances of encapsulated microorganisms and bead-validation in lamb rennet. LWT-Food Sci Technol. 2019;113:108349. https://doi.org/10.1016/j.lwt.2019.108349.Suche in Google Scholar

11. Pop, OL, Vodnar, DC, Suharoschi, R, Mudura, E, Socaciu, C. L. plantarum ATCC 8014 entrapment with prebiotics and lucerne green juice and their behavior in simulated gastrointestinal conditions. J Food Process Eng 2016;39:433–41. https://doi.org/10.1111/jfpe.12234.Suche in Google Scholar

12. Zorea, Y, Penhasi, A. Heat resistant probiotic compositions and healthy food comprising them. European Patent, EP 2451300 A1; 2012.Suche in Google Scholar

13. Semyonov, D, Ramon, O, Kaplun, Z, Levin-Brener, L, Gurevich, N, Shimoni, E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int 2010;43:193–202. https://doi.org/10.1016/j.foodres.2009.09.028.Suche in Google Scholar

14. Cook, MT, Tzortzis, G, Charalampopoulos, D, Khutoryanskiy, VV. Production and evaluation of dry alginate–chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 2011;12:2834–40. https://doi.org/10.1021/bm200576h.Suche in Google Scholar

15. Aragón-Rojas, S, Ruiz-Pardo, RY, Hernández-Álvarez, AJ, Quintanilla-Carvajal, MX. Sublimation conditions as critical factors during freeze-dried probiotic powder production. Dry Technol 2020;38:333–49. https://doi.org/10.1080/07373937.2019.1570248.Suche in Google Scholar

16. Petraitytė, S, Šipailienė, A. Enhancing encapsulation efficiency of alginate capsules containing lactic acid bacteria by using different divalent cross-linkers sources. LWT-Food Sci Technol 2019;110:307–15. https://doi.org/10.1016/j.lwt.2019.01.065.Suche in Google Scholar

17. Mu, Q, Tavella, VJ, Luo, XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 2018;9:757. https://doi.org/10.3389/fmicb.2018.00757.Suche in Google Scholar

18. Pop, OL, Dulf, FV, Cuibus, L, Castro-Giráldez, M, Fito, PJ, Vodnar, DC, et al. Characterization of a sea buckthorn extract and its effect on free and encapsulated Lactobacillus casei. Int J Mol Sci 2017;18:2513. https://doi.org/10.3390/ijms18122513.Suche in Google Scholar

19. Rasch, M, Barker, GC, Sachau, K, Jakobsen, M, Arneborg, N. Characterisation and modelling of oscillatory behaviour related to reuterin production by Lactobacillus reuteri. Int J Food Microbiol 2002;73:383–94. https://doi.org/10.1016/s0168-1605(01)00661-4.Suche in Google Scholar

20. Ceylan, Z, Uslu, E, İspirli, H, Meral, R, Gavgalı, M, Yilmaz, MT, et al. A novel perspective for Lactobacillus reuteri: nanoencapsulation to obtain functional fish fillets. LWT-Food Sci Technol 2019;115:108427. https://doi.org/10.1016/j.lwt.2019.108427.Suche in Google Scholar

21. Duar, RM, Lin, XB, Zheng, J, Martino, ME, Grenier, T, Pérez-Muñoz, ME, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017;41:27–48. https://doi.org/10.1093/femsre/fux030.Suche in Google Scholar PubMed

22. Marinescu, D. Bile salt hydrolyzing Lactobacillus reuteri (NCIMB 30242) for the reduction of markers of metabolic disease. MSc thesis, Department of Biomedical Engineering, McGill University, Canada; 2012.Suche in Google Scholar

23. Ju, J, Shen, L, Xie, Y, Yu, H, Guo, Y, Cheng, Y, et al. Degradation potential of bisphenol A by Lactobacillus reuteri. LWT-Food Sci Technol 2019;106:7–14. https://doi.org/10.1016/j.lwt.2019.02.022.Suche in Google Scholar

24. Poncelet, D, Prata, AS, El Mafadi, S, Boilleraux, L. Optimisation and process control of fluid bed coating. XVIIth International Conference on Bioencapsulation, Groningen, Netherlands; 2009.Suche in Google Scholar

25. Stummer, S, Salar-Behzadi, S, Unger, FM, Oelzant, S, Penning, M, Viernstein, H. Application of shellac for the development of probiotic formulations. Food Res Int. 2010;43:1312–20. https://doi.org/10.1016/j.foodres.2010.03.017.Suche in Google Scholar

26. Semyonov, D, Ramon, O, Kovacs, A, Friedlander, L, Shimoni, E. Air-suspension fluidized-bed microencapsulation of probiotics. Dry Technol 2012;30:1918–30. https://doi.org/10.1080/07373937.2012.708692.Suche in Google Scholar

27. Schell, D, Beermann, C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res Int 2014;62:308–14. https://doi.org/10.1016/j.foodres.2014.03.016.Suche in Google Scholar

28. Albadran, HA, Chatzifragkou, A, Khutoryanskiy, VV, Charalampopoulos, D. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Res Int 2015;74:208–16. https://doi.org/10.1016/j.foodres.2015.05.016.Suche in Google Scholar PubMed

29. Pitigraisorn, P, Srichaisupakit, K, Wongpadungkiat, N, Wongsasulak, S. Encapsulation of Lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. J Food Eng 2017;192:11–8. https://doi.org/10.1016/j.jfoodeng.2016.07.022.Suche in Google Scholar

30. Sinha, RN, Dudani, AT, Ranganathan, B. National dairy research protective effect of fortified skim milk as suspending medium for freeze drying of different Lactic acid bacteria. J Food Sci 1974;39:641–2. https://doi.org/10.1111/j.1365-2621.1974.tb02969.x.Suche in Google Scholar

31. Cook, MT, Tzortzis, G, Charalampopoulos, D, Khutoryanskiy, VV. Microencapsulation of probiotics for gastrointestinal delivery. J Controll Release 2012;162:56–67. https://doi.org/10.1016/j.jconrel.2012.06.003.Suche in Google Scholar PubMed

32. Jain, SK, Jain, A, Gupta, Y, Ahirwar, M. Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech 2007;8:34–41. https://doi.org/10.1208/pt0803056.Suche in Google Scholar PubMed PubMed Central

33. Desmond, C, Ross, RP, ÓCallaghan, E, Fitzgerald, G, Stanton, C. Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 2002;93:1003–11. https://doi.org/10.1046/j.1365-2672.2002.01782.x.Suche in Google Scholar PubMed

34. Lima, KGC, Kruger, MF, Behrens, J, Destro, MT, Landgraf, M, Franco, BDGM. Evaluation of culture media for enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus. LWT Food Sci Technol 2009;42:491–5. https://doi.org/10.1016/j.lwt.2008.08.011.Suche in Google Scholar

35. Ghosh, PK, Thakur, N, Rathore, MS. Effect of probiotic addition and shellac coating on in-vitro release of fluorouracil from guar gum matrix tablets for colon specific delivery. W J Pharmacy Pharma Sci 2014;3:1149–57.Suche in Google Scholar

36. Hamad, SA, Stoyanov, SD, Paunov, VN. Triggered cell release from shellac-cell composite microcapsules. Soft Matter 2012;18:5069–77. https://doi.org/10.1039/c2sm07488e.Suche in Google Scholar

37. Solanki, HK, Pawar, DD, Shah, DA, Prajapati, VD, Jani, GK, Mulla, AM, et al. Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Res Int 2013;1–21. https://doi.org/10.1155/2013/620719.Suche in Google Scholar

38. Sandoval-Castilla, O, Lobato-Calleros, C, García-Galindo, HS, Alvarez-Ramírez, J, Vernon-Carter, EJ. Textural properties of alginate-pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res Int 2010;43:111–7. https://doi.org/10.1016/j.foodres.2009.09.010.Suche in Google Scholar

39. Mandal, S, Puniya, AK, Singh, K. Effect of alginate concentration on survival of microencapsulated Lactobacillus casei NCDC-298. Int Dairy J 2006;16:1190–5. https://doi.org/10.1016/j.idairyj.2005.10.005.Suche in Google Scholar

40. Lee, KY, Heo, T. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Enviro Microbiol 2000;66:869–73. https://doi.org/10.1128/aem.66.2.869-873.2000.Suche in Google Scholar

41. Li, XY, Chen, XG, Sun, ZW, Park, HJ, Cha, DS. Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohyd Polym 2011;83:1479–85. https://doi.org/10.1016/j.carbpol.2010.09.053.Suche in Google Scholar

42. Lian, WC, Hsiao, HC, Chou, CC. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int J Food Microbiol 2003;86:293–301. https://doi.org/10.1016/s0168-1605(02)00563-9.Suche in Google Scholar

43. Krasaekoopt, W, Bhandari, B, Deeth, H. Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 2003;13:3–13. https://doi.org/10.1016/s0958-6946(02)00155-3.Suche in Google Scholar

44. Fritzen-Freire, CB, Prudêncio, ES, Amboni, RDMC, Pinto, SS, Negräo-Murakami, AN, Murakami, FS. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int 2012;45:306–12. https://doi.org/10.1016/j.foodres.2011.09.020.Suche in Google Scholar

45. Gouin, S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Tech 2004;15:330–47. https://doi.org/10.1016/j.tifs.2003.10.005.Suche in Google Scholar

46. Chávarri, M, Marañón, I, Ares, R, Ibáñez, FC, Marzo, F, Villarán, MC. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 2010;142:185–9. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022.Suche in Google Scholar PubMed

47. Capela, P. Use of cryoprotectants, prebiotics and microencapsulation of bacterial cells in improving the viability of probiotic organisms in freeze-dried yoghurt. Research Master thesis, Victoria University, Australia; 2006.10.1016/j.foodres.2005.07.007Suche in Google Scholar

48. Zhou, Y, Martins, E, Groboillot, A, Champagne, CP, Neufeld, RJ. Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating. J Appl Microbiol 1988;84:342–8. https://doi.org/10.1046/j.1365-2672.1998.00348.x.Suche in Google Scholar

49. Salar-Behzadi, S, Wu, S, Toegel, S, Hofrichter, M, Altenburger, I, Unger, FM, et al. Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Res Int 2013;54:93–101. https://doi.org/10.1016/j.foodres.2013.05.024.Suche in Google Scholar

50. Kearney, N, Meng, XC, Stanton, C, Kelly, J, Fitzgerald, GF, Ross, RP. Development of a spray dried probiotic yoghurt containing Lactobacillus paracasei NFBC 338. Int Dairy J 2009;19:684–9. https://doi.org/10.1016/j.idairyj.2009.05.003.Suche in Google Scholar

Received: 2019-12-24
Accepted: 2020-07-09
Published Online: 2020-07-30

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2019-0384/html
Button zum nach oben scrollen