Home Impact of octenyl succinic anhydride (OSA) modified starch on the particle size distribution and rheological properties of xanthan gum in aqueous solutions
Article
Licensed
Unlicensed Requires Authentication

Impact of octenyl succinic anhydride (OSA) modified starch on the particle size distribution and rheological properties of xanthan gum in aqueous solutions

  • Imene Boulhaia , Abdelkader HadjSadok EMAIL logo , Nadji Moulai-Mostefa and Ali Aouabed
Published/Copyright: July 24, 2020

Abstract

Effects of addition of octenyl succinate anhydride (OSA) starch on the structural, rheological and thermo-rheological properties of aqueous solutions of 0.5 (w/v %) xanthan gum were evaluated. Analysis by dynamic light scattering revealed the absence of complex formation in the mixed solution. However, it was noticed that an increase in the concentration of OSA starch (COSA) leads simultaneously to an increase of the number of micelles and their self-assembly within the network formed by the xanthan macromolecules. This same mechanism was observed during the evaluation of the rheological properties. For systems containing 0.5 (w/v %) of xanthan and for which COSA ≤ 4 (w/v %), a thermoreversible behavior was found similar to that of xanthan in solution. Furthermore, for COSA ≥ 5 (w/v %), the rheological behavior remained indifferent to the increase in temperature but, scored a spectacular rise in storage modulus when the cooling temperature begins near 70 °C.


Corresponding author: Abdelkader HadjSadok, LAFPC, University of Blida 1, Route de Soumaa, 09000Blida, Algeria, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Polyakov, VI, Grinberg, VY, Tolstoguzov, VB. Thermodynamic incompatibility of proteins. Food Hydrocoll 1997;11:171–80. http://doi.org/10.1016/s0268-005x(97)80024-0.10.1016/S0268-005X(97)80024-0Search in Google Scholar

2. Dickinson, E. Structure, stability and rheology of flocculated emulsions. Curr Opin Colloid Interface Sci 1998;3:633–8. http://doi.org/10.1016/s1359-0294(98)80092-7.10.1016/S1359-0294(98)80092-7Search in Google Scholar

3. Dickinson, E, Golding, M. Depletion flocculation of emulsions containing unadsorbed sodium caseinate. Food Hydrocoll 1997;11:13–8. http://doi.org/10.1016/s0268-005x(97)80005-7.10.1016/S0268-005X(97)80005-7Search in Google Scholar

4. Pomeranz, Y. Wheat, chemistry and technology, 3rd ed. St. Paul, MN, 55121 (USA): American Association of Cereal Chemists; 1998, vol 1 and 11.Search in Google Scholar

5. Rebiha, M, Moulai-Mostefa, N, HadjSadok, A. Investigations of the effects of xanthan and sodium caseinate on the formation and stability of an oil-in-water emulsion stabilized by a nonionic surfactant using a response surface method. J Disp Sci Technol 2012;33:429–36. http://doi.org/10.1080/01932691.2011.567860.10.1080/01932691.2011.567860Search in Google Scholar

6. Nono, M, Lalouette, L, Durand, D, Nicolai, T. Cluster formation and phase separation in mixtures of sodium κ-carrageenan and sodium caseinate. Food Hydrocoll 2011;25:743–9. http://doi.org/10.1016/j.foodhyd.2010.08.017.10.1016/j.foodhyd.2010.08.017Search in Google Scholar

7. Shogren, RL, Viswanathan, A, Felker, F, Gross, RA. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch. Starch/Stärke 2000;52:196–204. http://doi.org/10.1002/1521-379x(200007)52:6/7<196::aid-star196>3.0.co;2-4.10.1002/1521-379X(200007)52:6/7<196::AID-STAR196>3.0.CO;2-4Search in Google Scholar

8. Nilsson, L, Bergenstahl, B. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. J Colloid Interface Sci 2007;308:508–13. http://doi.org/10.1016/j.jcis.2007.01.024.10.1016/j.jcis.2007.01.024Search in Google Scholar

9. Li, JZ. The use of starch-based materials for microencapsulation (Chapter 18). In: Gaonkar, AG, Vasisht, N, Khare, AR, Sobel, R, editors. Microencapsulation in the food industry. San Diego: Academic Press; 2014.10.1016/B978-0-12-404568-2.00018-2Search in Google Scholar

10. Agama-Acevedo, E, Bello-Perez, LA. Starch as an emulsions stability: the case of octenyl succinic anhydride (OSA) starch. Curr Opin Food Sci 2017;13:78–83. http://doi.org/10.1016/j.cofs.2017.02.014.10.1016/j.cofs.2017.02.014Search in Google Scholar

11. Yu, Z-Y, Jiang, S-W, Zheng, Z, Cao, X-M, Hou, Z-G, Xu, J-J, et al. Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions. Int J Biol Macromol 2019;137:277–85. http://doi.org/10.1016/j.ijbiomac.2019.06.230.10.1016/j.ijbiomac.2019.06.230Search in Google Scholar

12. Domian, E, Cenkier, J, Górska, A, Brynda-Koytowska, A. Effect of oil content and drying method on bulk properties and stability of powdered emulsions with OSA starch and linseed oil. LWT-Food Sci Technol 2018;88:95–102. http://doi.org/10.1016/j.lwt.2017.09.043.10.1016/j.lwt.2017.09.043Search in Google Scholar

13. Dapčević-Hadnađev, T, Hadnađev, M, Pojić, M, Rakita, S, Krstonošić, V. Functionality of OSA starch stabilized emulsions as fat replacers in cookies. J Food Eng 2015;167:133–8. https://doi.org/10.1016/j.jfoodeng.2015.02.002.Search in Google Scholar

14. Iseki, T, Takahashi, M, Hattori, H, Hatakeyama, T, Hatakeyama, H. Viscoelastic properties of xanthan gum hydrogels annealed in the sol state. Food Hydrocoll 2001;15:503–6. http://doi.org/10.1016/s0268-005x(01)00088-1.10.1016/S0268-005X(01)00088-1Search in Google Scholar

15. Desplanques, S, Grisel, M, Malhiac, C, Renou, F. Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocoll 2014;35:181–8. http://doi.org/10.1016/j.foodhyd.2013.05.009.10.1016/j.foodhyd.2013.05.009Search in Google Scholar

16. Morris, ER, Rees, DA, Young, G, Walkinshaw, MD, Darke, A. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. J Mol Biol 1977;110:1–16. http://doi.org/10.1016/s0022-2836(77)80095-8.10.1016/S0022-2836(77)80095-8Search in Google Scholar

17. Wang, F, Sun, Z, Wang, Y-J. Study of xanthan gum/waxy corn starch interaction in solution by viscometry. Food Hydrocoll 2001;15:575–81. http://doi.org/10.1016/s0268-005x(01)00065-0.10.1016/S0268-005X(01)00065-0Search in Google Scholar

18. Ortega-Ojeda, FE, Larsson, H, Eliasson, A. Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch. Carbohydr Polym 2005;59:313–27. http://doi.org/10.1016/j.carbpol.2004.10.011.10.1016/j.carbpol.2004.10.011Search in Google Scholar

19. Ntawukulilyayo, JD, De Smedt, SC, Demeester, J, Remon, JP. Stabilisation of suspensions using esters and low substituted n-octenylsuccinate starch-xanthan gum associations. Int J Pharm 1986;28:73–79. https://doi.org/10.1016/0378-5173(95)04223-7.Search in Google Scholar

20. Krstonošić, V, Dokić, L, Milanović, J. Micellar properties of OSA starch and interaction with xanthan gum in aqueous solution. Food Hydrocoll 2011;25:361–7. https://doi.org/10.1016/j.foodhyd.2010.06.014.Search in Google Scholar

21. Krstonošić, V, Dokić, L, Nikolić, I, Milanović, M. Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocoll 2015;45:9–17. https://doi.org/10.1016/j.foodhyd.2014.10.024.Search in Google Scholar

22. He, H, Hong, Y, Gu, Z, Liu, G, Cheng, L, Li, Z. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum. Carbohydr Polym 2016;147:243–50. http://doi.org/10.1016/j.carbpol.2016.03.078.10.1016/j.carbpol.2016.03.078Search in Google Scholar

23. Zhang, Y, Gu, Z, Zhu, L, Hong, Y. Comparative study on the interaction between native corn starch and different hydrocolloids during gelatinization. Int J Biol Macromol 2018;116:136–43. http://doi.org/10.1016/j.ijbiomac.2018.05.011.10.1016/j.ijbiomac.2018.05.011Search in Google Scholar

24. Chivero, P, Gohtani, S, Yoshii, H, Nakamura, A. Assessment of soy soluble polysaccharide, gum arabic and OSA-Starch as emulsifiers for mayonnaise-like emulsions. LWT – Food Sci Technol 2016;69:59–66. http://doi.org/10.1016/j.lwt.2015.12.064.10.1016/j.lwt.2015.12.064Search in Google Scholar

25. Cai, X, Du, X, Zhu, G, Cao, C. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. https://doi.org/10.1016/j.foodhyd.2020.105776.Search in Google Scholar

26. Dokić, L, Krstonošić, V, Nikolić, I. Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocoll 2012;29:185–92.10.1016/j.foodhyd.2012.02.008Search in Google Scholar

27. Lim, T, Uhl, JT, Prud’homme, RK. Rheology of sel-associating concentrated xanthan solutions. J. Rheol 1984;28:367–79. http://doi.org/10.1122/1.549757.10.1122/1.549757Search in Google Scholar

28. Eshuis, A, Harbers, G, Doornink, DJ, Mijnlieff, PF. Experimental determination of particle size distributions in colloidal systems by dynamic light scattering. Application to polystyrene latex spheres and to nonionic microemulsions. Langmuir 1985;1:289–93. http://doi.org/10.1021/la00063a005.10.1021/la00063a005Search in Google Scholar

29. Berne, BJ, Pecora, R. Dynamic light scattering with applications to chemistry, biology, and physics. New York: Wiley‐Interscience; 1976.Search in Google Scholar

30. Brown, W. Dynamic light scattering: the method and some applications. USA: Oxford University Press; 1993.10.1093/oso/9780198539421.001.0001Search in Google Scholar

31. HadjSadok, A, Pitkowski, A, Nicolai, T, Benyahia, L, Moulai-Mostefa, N. Characterisation of sodium caseinate as a function of ionic strength, pH and temperature using static and dynamic light scattering. Food Hydrocoll 2008;22:1460–6. http://doi.org/10.1016/j.foodhyd.2007.09.002.10.1016/j.foodhyd.2007.09.002Search in Google Scholar

32. Nash, W, Pinder, DN, Hemar, Y, Singh, H. Dynamic light scattering investigation of sodium caseinate and xanthan mixtures. Int J Biol Macromol 2002;30:269–71. http://doi.org/10.1016/s0141-8130(02)00041-7.10.1016/S0141-8130(02)00041-7Search in Google Scholar

33. Rodd, AB, Dunstan, DE, Boger, DV. Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr Polym 2000;42:159–74. http://doi.org/10.1016/s0144-8617(99)00156-3.10.1016/S0144-8617(99)00156-3Search in Google Scholar

34. Cao, Z, Zhang, G. Insight into dynamics of polyelectrolyte chains in salt-free solutions by laser light scattering and analytical ultracentrifugation. Polymer 2014;55:6789–94. http://doi.org/10.1016/j.polymer.2014.10.046.10.1016/j.polymer.2014.10.046Search in Google Scholar

35. Zhu, J, Li, L, Chen, L, Li, X. Nano-structure of octenyl succinic anhydride modified starch micelle. Food Hydrocoll 2013;32:1–8. http://doi.org/10.1016/j.foodhyd.2012.11.033.10.1016/j.foodhyd.2012.11.033Search in Google Scholar

36. Yusoff, A, Abiddin, NFZ, Ahmad, N. Effect of octenylsuccinylation on morphological, particle size and surface activity of octenyl succinic anhydride (OSA) modified sago starch. Int J Food Eng 2017;3:112–16. https://doi.org/10.18178/ijfe.3.2.112-116.Search in Google Scholar

37. Chu, B, Zhou, Z, Wu, W, Farrell, HMJ. Laser light scattering of model casein solutions: effects of high temperature. J Colloid Interface Sci 1985;170:102–12. https://doi.org/10.1006/jcis.1995.1077.Search in Google Scholar

38. Silva, S, Torres, MD, Chenlo, F, Moreira, R. Rheology of aqueous mixtures of tragacanth and guar gums: effects of temperature and polymer ratio. Food Hydrocoll 2017;69:293–300. http://doi.org/10.1016/j.foodhyd.2017.02.018.10.1016/j.foodhyd.2017.02.018Search in Google Scholar

39. Williams, PA, Day, DH, Langdon, MJ, Phillips, GO, Nishinari, K. Synergistic interaction of xanthan gum with glucomannans and galactomannans. Food Hydrocoll 1991;4:489–93. http://doi.org/10.1016/s0268-005x(09)80199-9.10.1016/S0268-005X(09)80199-9Search in Google Scholar

Received: 2019-09-13
Accepted: 2020-06-15
Published Online: 2020-07-24

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2019-0279/html
Scroll to top button