Startseite Partitioning Behavior of Lysozyme and α-lactalbumin in Aqueous Two-Phase System Formed by Ionic Liquids and Potassium Phosphate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Partitioning Behavior of Lysozyme and α-lactalbumin in Aqueous Two-Phase System Formed by Ionic Liquids and Potassium Phosphate

  • Vanessa S. Sampaio , Renata C. F. Bonomo EMAIL logo , Cristiane M. Veloso , Rita C. S. Sousa , Evaldo C. S. Júnior , Rafael C. I. Fontan , Michelle C. Pignata , Karine A. Santos und Olga R. R. Gandolfi
Veröffentlicht/Copyright: 6. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Nowadays ionic liquids (ILs), because of their “green” characteristics, have been used for analytical and separation processes. Therefore the partitioning of lysozyme and α-lactalbumin using aqueous two-phase systems (ATPSs) composed of an ionic liquid (chloride 1-ethyl-3-methylimidazolium) and inorganic salts (K2HPO4, KH2PO4) was studied. Phase equilibrium diagrams were obtained to explore the effect of the different temperatures (293.15, 303.15, 313.15, and 323.15) K and pH (7.5, 8.0, and 8.5) used for the partitioning studies. For both proteins, partition coefficients decreased with increasing temperature. The pH influenced the partition coefficients of lysozyme and α-lactalbumin. The thermodynamic parameters (ΔH◦, ΔS◦, ΔG◦) indicate thermodynamic differences between the partitioning of lysozyme and α-lactalbumin in this system. The ΔH◦, ΔS◦, and ΔG◦ values of the process studied showed that this process is spontaneous. This work demonstrates the possible use of ATPSs with ILs and inorganic salts as a methodology for the partitioning of lysozyme and α-lactalbumin.

References

[1] Pau-Loke S, Tau-Chuan L, John CW, Beng-Ti T, Ramakrishnan NR, Siek-Ting Y, et al. Review of microbial lipase purification using aqueous two-phase systems. Curr Org Chem. 2015;19:19–29.10.2174/1385272819666141107225446Suche in Google Scholar

[2] Carvalho T, Finotelli PV, Bonomo RC, Franco M, Amaral PF. Evaluating aqueous two-phase systems for Yarrowia lipolytica extracellular lipase purification. Process Biochem. 2017;53:259–66.10.1016/j.procbio.2016.11.019Suche in Google Scholar

[3] Albertsson PA. Partition of proteins in liquid polymer-polymer two-phase systems. Nature. 1958;182:709–11.10.1038/182709a0Suche in Google Scholar PubMed

[4] de Souza EC, Coimbra J, de Oliveira EB, Bonomo RC. Recovery of casein-derived peptides with in vitro inhibitory activity of angiotensin converting enzyme (ACE) using aqueous two-phase systems. J Chromatogr B. 2014;973:84–88.10.1016/j.jchromb.2014.10.014Suche in Google Scholar PubMed

[5] Gorri D, Fallanza M, Ortiz A, Ortiz I. Supported liquid membranes for pervaporation processes. Comprehensive membrane science and engineering, 2nd ed. Oxford: Elsevier Science. 2011:332–54.10.1016/B978-0-12-409547-2.12258-9Suche in Google Scholar

[6] Li C, Han J, Wang Y, Yan Y, Pan J, Xu X, et al. Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts. J Chem Eng Data. 2010;55:1087–92.10.1021/je900533hSuche in Google Scholar

[7] Lu Y, Lu W, Wang W, Guo Q, Yang Y. Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system. Talanta. 2011;85:1621–26.10.1016/j.talanta.2011.06.058Suche in Google Scholar PubMed

[8] Dinis TB, Passos H, Lima DL, Esteves VI, Coutinho JA, Freire MG. One –step extraction and concentration of estrogens for na adequate monitoring of wastewaters using ionic-liquid based aqueous biphasic systems. Green Chem. 2015;17:2570–79.10.1039/C5GC00077GSuche in Google Scholar PubMed PubMed Central

[9] Xiao D, Li S, Liu S, He H, Lu J. One-step hydrothermal synthesis of photoluminescent carbon nitride dots derived from ionic liquids. New J Chem. 2016;40:320–24.10.1039/C5NJ01717CSuche in Google Scholar

[10] Van de Guchte M, Van der Wal FJ, Kok J, Venema G. Lysozyme expression in Lactococcus lactis. Appl Microbiol Biotechnol. 1992;37:216–24.10.1007/BF00178174Suche in Google Scholar PubMed

[11] Fuglsang CC, Johansen C, Christgau S, Adler-Nissen J. Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci Tech. 1995;6:390–96.10.1016/S0924-2244(00)89217-1Suche in Google Scholar

[12] Bramaud C, Aimar P, Daufin G. Whey protein fractionation: isoelectric precipitation of alpha-lactalbumin under gentle heat treatment. Biotechnol Bioeng. 1997;56:391–97.10.1002/(SICI)1097-0290(19971120)56:4<391::AID-BIT5>3.0.CO;2-JSuche in Google Scholar PubMed

[13] De Sousa RC, Coimbra JS, da Silva LH, da Silva MC, Roja EE, Vicente AA. Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems. J Chromatogr B. 2009;877:2579–84.10.1016/j.jchromb.2009.07.002Suche in Google Scholar

[14] Liu Y, Wu Z, Zhang Y, Yuan H. Partitioning of biomolecules in aqueous two-phase systems of polyethyleneglycol and nonionic surfactant. Biochem Eng J. 2012;69:92–99.10.1016/j.bej.2012.08.018Suche in Google Scholar

[15] Dembczyn´ Ski R, Bialas W, Jankowski T. Partitioning of lysozyme in aqueous two-phase systems containing ethylene oxide-propylene oxide copolymer and potassium phosphates. Food Bioprod Process. 2013;91:292–302.10.1016/j.fbp.2012.11.001Suche in Google Scholar

[16] Alcântara LA, Amaral IV, Bonomo RC, da Silva LH, da Silva MC, Minim VP, et al. Partitioning of α-lactalbumin and β-lactoglobulinfrom cheese whey in aqueous two-phase systemscontaining poly (ethylene glycol) and sodiumpolyacrylate. Food Bioprod Process. 2014;92:409–15.10.1016/j.fbp.2013.09.006Suche in Google Scholar

[17] Kalaivani S, Regupathi I. Synergistic extraction of a-Lactalbumin and b-Lactoglobulin from acid whey using aqueous biphasic system: process evaluation and optimization. Sep Purif Technol. 2015;146:301–10.10.1016/j.seppur.2015.03.057Suche in Google Scholar

[18] Mokhtarani B, Mortaheb HR, Mafi M, Amini MH. Partitioning of ˛α- lactalbumin and β-lactoglobulin in aqueous two-phase systems of polyvinylpyrrolidone and potassium phosphate. J Chromatogr B. 2011;879:721–26.10.1016/j.jchromb.2011.02.007Suche in Google Scholar

[19] Merchuk JC, Andrews BA, Asenjo JA. Aqueous two-phase systems for protein separation. Studies on phase inversion. J Chromatogr B Biomed Sci Appl. 1998;711:285–93.10.1016/S0378-4347(97)00594-XSuche in Google Scholar PubMed

[20] Hu M, Zhai Q, Liu Z, Xia S. Liquid−liquid and solid−liquid equilibrium of the ternary system ethanol + cesium sulfate + water at (10, 30, and 50) °C. J Chem Eng Data. 2003;48:1561–64.10.1021/je0301803Suche in Google Scholar

[21] Mistry SL, Kaul A, Merchuk JC, Asenjo JA. Mathematical modelling and computer simulation of aqueous two-phase continuous protein extraction. J Chromatogr A 1996;741:151–63.10.1016/0021-9673(96)00179-3Suche in Google Scholar

[22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.10.1016/0003-2697(76)90527-3Suche in Google Scholar PubMed

[23] Chen Y, Deng Y, Meng Y, Zhang S. Partitioning equilibria and thermodynamics of gallium, indium, and thallium in aqueous two-phase systems. J Chem Eng Data. 2015;60:1464–68.10.1021/acs.jced.5b00010Suche in Google Scholar

[24] Yu C, Han J, Wang Y, Yan Y, Hu S, Li Y, et al. Liquid–liquid equilibrium composed of imidazolium tetrafluoroborate ionic liquids + sodium carbonate aqueous two-phase systems and correlation at (288.15, 298.15, and 308.15) K. Thermochim Acta. 2011;523:221–26.10.1016/j.tca.2011.05.028Suche in Google Scholar

[25] Zhang W, Zhang G, Han J, Yan Y, Chen B, Sheng C, et al. Phase equilibrium and chloramphenicol partitioning in aqueous two-phase system composed of 1-hydroxylhexyl-3-methylimidazolium chloride–salt. J Mol Liq. 2014;193:226–31.10.1016/j.molliq.2013.12.047Suche in Google Scholar

[26] Ananthapadmanabhan KP, Goddard ED. Aqueous biphase formation in polyethylene oxide-inorganic salt systems. Langmuir. 1987;3:25–31.10.1021/la00073a005Suche in Google Scholar

[27] Mourão T, Cláudio AF, Boal-Palheiros I, Freire MG, Coutinho JA. Evaluation of the impact of phosphate salts on the formation of ionic-liquid-based aqueous biphasic systems. J Chem Thermodyn. 2012;54:398–405.10.1016/j.jct.2012.05.019Suche in Google Scholar

[28] Dreyer S, Salim P, Kragl U. Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochem Eng J. 2009;46:176–85.10.1016/j.bej.2009.05.005Suche in Google Scholar

[29] Fox PF, McSweeney PL. Dairy chemistry and biochemistry. Switzerland: Springer International Publishing, 1998.Suche in Google Scholar

[30] Pei Y, Wang J, Wu K, Xuan X, Lu X. Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep Purif Technol. 2009;64:288–95.10.1016/j.seppur.2008.10.010Suche in Google Scholar

[31] Alcântara LA, Minim LA, Bonomo RC, da Silva LH, da Silva MC. Application of the response surface methodology for optimization of whey protein partitioning in PEG/phosphate aqueous two-phase system. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879:1881–85.10.1016/j.jchromb.2011.05.007Suche in Google Scholar PubMed

[32] Johansson HO, Ishii M, Minaguti M, Feitosa E, Pena TC, Pessoa JA. Separation and partitioning of green fluorescent protein from Escherichia coli homogenate in poly(ethylene glycol)/sodium-poly(acrylate) aqueous two-phase systems. Sep Purif Technol. 2008;62:166–74.10.1016/j.seppur.2008.01.017Suche in Google Scholar

[33] Saravanan S, Rao JR, Nair BU, Ramasami T. Aqueous two-phase poly(ethylene glycol)–poly(acrylic acid) system for protein partitioning: influence of molecular weight, pH and temperature. Process Biochem. 2008;43:905–11.10.1016/j.procbio.2008.04.011Suche in Google Scholar

[34] Peters TJ. Partition of cell particles and macromolecules: Separation and purification of biomolecules, cell organelles, membranes and cells in aqueous polymer two phase systems and their use in biochemical analysis and biotechnology. Cell Biochem Funct. 1987;5:233–4.10.1002/cbf.290050311Suche in Google Scholar

[35] Forciniti D, Hall CK, Kula MR. Influence of polymer molecular weight and temperature on phase composition in aqueous two-phase systems. Fluid Phase Equilibr. 1991;61:243–62.10.1016/0378-3812(91)80002-DSuche in Google Scholar

[36] Mazzeu CJ, Ramos EZ, da Silva CM, Hirata DB, Virtuoso LS. Partitioning of Geotrichum candidum Lipase from fermentative crude extract by aqueous two-phase system of polyethylene glycol and sodium citrate. Sep Purif Technol. 2015;156 Part 2:158–64.10.1016/j.seppur.2015.09.069Suche in Google Scholar

Received: 2017-6-7
Accepted: 2017-8-31
Published Online: 2017-10-6

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2017-0274/html?lang=de
Button zum nach oben scrollen