Microencapsulation of Bioactive Compounds from Blackberry Pomace (Rubus fruticosus) by Spray Drying Technique
-
Suelen Siqueira dos Santos
, Letícia Misturini Rodrigues
Abstract
Blackberry is highly appreciated for the enjoyable color and flavor. About 20 % of the pomace is generated in its processing and often unused, presenting potential use by the food industry. Thus, the present study aimed to microencapsulate extracts of the blackberry pomace applying spray dryer process. Pure extracts (aqueous and hydroalcoholic solution) and the encapsulating agent (maltodextrin DE 10), in a ratio of 1:1 (w/w), were spray dried and analyzed for total anthocyanins, antioxidant activity, phenolics, HPLC-DAD chromatography, instrumental color and scanning electron microscopy. Hydroalcoholic extraction was more efficient (1.5 times) for anthocyanins encapsulation than aqueous extraction. However, for phenolic compounds the highest efficiency (1.2 times) was in the aqueous solution. The majority bioactive compounds were gallic acid and cyanidin. Considering that water is a low cost and ecofriendly solvent, it is indicated this type of extraction to obtain microcapsules of blackberry pomace mainly for future applications by food industry.
References
[1] Ferreira DS, Rosso VVD, Mercadante AZ. Compostos bioativos presentes em amora-preta (Rubus spp.). Rev Bras Frutic [Internet]. 2010;32(3):664–674 Available from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-29452010000300004&lng=pt&nrm=iso&tlng=en.10.1590/S0100-29452010005000110Search in Google Scholar
[2] Antunes LEC. Amora-Preta: Nova Opção De Cultivo No Brasil. Ciência Rural. 2002;32(1):151–158.10.1590/S0103-84782002000100026Search in Google Scholar
[3] Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A Review. Biotechnol Adv. 2011;29(3):365–373.10.1016/j.biotechadv.2011.01.008Search in Google Scholar PubMed
[4] Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011;126(4):1821–1835.10.1016/j.foodchem.2010.12.026Search in Google Scholar PubMed
[5] Reátegui JLP, Machado APDF, Barbero GF, Rezende CA, Martínez J. Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J Supercrit Fluids [Internet]. 2014;94:223–233 Available from http://linkinghub.elsevier.com/retrieve/pii/S0896844614002204.10.1016/j.supflu.2014.07.019Search in Google Scholar
[6] Ivanovic J, Tadic V, Dimitrijevic S, Stamenic M, Petrovic S, Zizovic I. Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna. Ind Crops Prod. 2014;53:274–281.10.1016/j.indcrop.2013.12.048Search in Google Scholar
[7] Machado APDF, Pasquel-Reátegui JL, Barbero GF, Martínez J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Res Int [Internet]. 2015;77:675–683. Elsevier LtdAvailable from. DOI:http://dx.doi.org/10.1016/j.foodres.2014.12.042.Search in Google Scholar
[8] Lopes TJ, Xavier MF, Quadri MGN, Quadri MB. Antocianinas: Uma Breve Revisão Das Características Estruturais E Da Estabilidade. Rev Bras Agrociência [Internet]. 2007;13(3):291–297 Available from http://periodicos.ufpel.edu.br/ojs2/index.php/CAST/article/view/1375/1359.Search in Google Scholar
[9] Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 2007;40(9):1107–1121.10.1016/j.foodres.2007.07.004Search in Google Scholar
[10] Saenz C, Tapia S, Chavez J, Robert P. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem [Internet]. 2009 May 15;114(2):616–622 [cited 2016Aug20]. Available from http://linkinghub.elsevier.com/retrieve/pii/S0308814608011904.10.1016/j.foodchem.2008.09.095Search in Google Scholar
[11] Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: A review. Int J Food Sci Nutr [Internet]. 1999 May 20;50(3):213–224 [cited 2016Aug20]. Available from http://www.ncbi.nlm.nih.gov/pubmed/10627837.10.1080/096374899101256Search in Google Scholar PubMed
[12] Jyothi SS, Seethadevi A, Prabha KS, Muthuprasanna P, Pavitra P. Microencapsulation: A review. Int J Pharma Bio Sci. 2012;3(1):509–531.Search in Google Scholar
[13] Desai KGH, Park HJ. Recent Developments in Microencapsulation of Food Ingredients. Dry Technol. 2005;23:1361–1394.10.1081/DRT-200063478Search in Google Scholar
[14] Favaro-Trindade CS, Pinho SCD, Rocha GA. Revisão: Microencapsulação de ingredientes alimentícios. Braz J Food Technol. 2008;11(2):103–112.Search in Google Scholar
[15] Cruz AG, Castro WF, Faria JAF, Bolini HMA, Celeghini RMS, Raices RSL, et al. Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage. Food Res Int [Internet]. 2013 Apr 25;51(2):723–728 [cited 2017Apr25]. Available from http://www.sciencedirect.com/science/article/pii/S0963996913000471.10.1016/j.foodres.2013.01.028Search in Google Scholar
[16] Batista ALD, Silva R, Cappato LP, Almada CN, Garcia RKA, Silva MC, et al. Quality parameters of probiotic yogurt added to glucose oxidase compared to commercial products through microbiological, physical–chemical and metabolic activity analyses. Food Res Int [Internet]. 2015 Apr 25;77(3):627–635 [cited 2017Apr25]. Available from http://www.sciencedirect.com/science/article/pii/S0963996915301502.10.1016/j.foodres.2015.08.017Search in Google Scholar
[17] Gaze LV, Oliveira BR, Ferrao LL, Granato D, Cavalcanti RN, Conte Júnior CA, et al. Preference mapping of dulce de leche commercialized in Brazilian markets. J Dairy Sci [Internet]. 2015 98(3):1443–1454 [cited 2017Apr27]. Available from http://www.sciencedirect.com/science/article/pii/S0022030214009059.10.3168/jds.2014-8470Search in Google Scholar PubMed
[18] Janiaski DR, Pimentel TC, Cruz AG, Prudencio SH. Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product?. J Dairy Sci [Internet]. 2016 99(7):5273–5283 [cited 2017Apr27]. Available from http://www.sciencedirect.com/science/article/pii/S0022030216302168.10.3168/jds.2015-10097Search in Google Scholar PubMed
[19] Aoac: AOAC. Official Methods of Analysis Vol. 1. Arlington: Association of Official Analytical Chemists. 771 p 1990 .Search in Google Scholar
[20] Shirahigue LD, Contreras-Castillo CJ, Selani MM, Nadai AP, Mourão GB, Gallo CR. Winery grape-residue extract: Effects on quality and sensory attributes of cooked chicken meat. Food Sci Biotechnol. 2011;20(5):1257–1264.10.1007/s10068-011-0173-8Search in Google Scholar
[21] Ferrari CC, Germer SPM, Alvim ID, Vissotto FZ, De Aguirre JM. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int J Food Sci Technol. 2012;47(6):1237–1245.10.1111/j.1365-2621.2012.02964.xSearch in Google Scholar
[22] Valduga E, Lima L, Do Prado R, Ferreira Padilha F, Treichel H. Extração, secagem por atomização e microencapsulamento de antocianinas do bagaço da uva isabel ISABEL (Vitis labrusca). Ciênc Agrotec Lavras. 2008;32(5):1568–1574.10.1590/S1413-70542008000500032Search in Google Scholar
[23] Díaz DI, Beristain CI, Azuara E, Luna G, Jimenez M. Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. J Microencapsul [Internet]. 2015 32(3):247–254 [cited 2016Dec20]. Available from http://www.ncbi.nlm.nih.gov/pubmed/26006741.10.3109/02652048.2015.1010458Search in Google Scholar PubMed
[24] Singleton VL, Rossi JA. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am J Enol Vitic. 1965;16(3):144–158.10.5344/ajev.1965.16.3.144Search in Google Scholar
[25] Pierpoint WS. The extraction of enzymes from plant tissues rich in phenolic compounds. Methods Mol Biol [Internet]. 2004 244:65–74 [cited 2016Aug20]. Available from http://www.ncbi.nlm.nih.gov/pubmed/14970544.10.1385/1-59259-655-X:65Search in Google Scholar
[26] Lee J, Durst RW, Wrolstad RE. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J AOAC Int. 2005;88(5):1269–1278.10.1093/jaoac/88.5.1269Search in Google Scholar
[27] Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19:669–675.10.1016/j.jfca.2006.01.003Search in Google Scholar
[28] Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric And. Food Chem. 2000;48:3396–3402.10.1021/jf9913458Search in Google Scholar PubMed
[29] Sansone F, Picerno P, Mencherini T, Villecco F, D ’Ursi AM, Aquino RP, et al. Flavonoid microparticles by spray-drying: Influence of enhancers of the dissolution rate on properties and stability. J Food Eng. 2011;103:188–196.10.1016/j.jfoodeng.2010.10.015Search in Google Scholar
[30] Rosa CG, Borges CD, Zambiazi RC, Kuhn Rutz J, Rickes S, Luz, et al. Encapsulation of the phenolic compounds of the blackberry (Rubus fruticosus). Lwt. 2014;58:527–533.10.1016/j.lwt.2014.03.042Search in Google Scholar
[31] Ribeiro LF, Ribani RH, Francisco TMG, Soares AA, Pontarolo R, Haminiuk CWI. Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses. J Chromatogr B Anal Technol Biomed Life Sci. 2015;1007:72–80.10.1016/j.jchromb.2015.11.005Search in Google Scholar PubMed
[32] Ferrari CC, Ribeiro CP, Aguirre JMD. Secagem por atomização de polpa de amora-preta usando maltodextrina como agente carreador. Brazilian J Food Technol. 2012;15(2):157–165.10.1590/S1981-67232012005000009Search in Google Scholar
[33] Zielinski AAF, Goltz C, Yamato MAC, Ávila S, Hirooka EY, Wosiacki G, et al. Blackberry (Rubus spp.): Influence of ripening and processing on levels of phenolic compounds and antioxidant activity of the “Brazos” and “Tupy” varieties grown in Brazil. Ciência Rural. 2015;45(4):744–749.10.1590/0103-8478cr20120715Search in Google Scholar
[34] Mikulic-Petkovsek M, Koron D, Zorenc Z, Veberic R. Do optimally ripe blackberries contain the highest levels of metabolites?. Food Chem. 2017;215:41–49.10.1016/j.foodchem.2016.07.144Search in Google Scholar PubMed
[35] Basanta MF, Marin A, De Leo SA, Gerschenson LN, Erlejman AG, Tomás-Barberán FA, et al. Antioxidant Japanese plum (Prunus salicina) microparticles with potential for food preservation. J Funct Foods. 2016;24:287–296.10.1016/j.jff.2016.04.015Search in Google Scholar
[36] Oszmiański J, Kolniak-Ostek J, Lachowicz S, Gorzelany J, Matłok N. Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.). Ind Crops Prod. 2015;77:658–665.10.1016/j.indcrop.2015.09.054Search in Google Scholar
[37] Tural S, Koca I. Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Sci Hortic (Amsterdam). 2008;116:362–366.10.1016/j.scienta.2008.02.003Search in Google Scholar
[38] Estupiñan DC, Schwartz SJ, Garzón GA. Antioxidant activity, total phenolics content, anthocyanin, and color stability of isotonic model beverages colored with Andes berry (Rubus glaucus Benth) anthocyanin powder. J Food Sci [Internet]. 2011;76(1) S26–S34. Available from http://www.ncbi.nlm.nih.gov/pubmed/21535712.10.1111/j.1750-3841.2010.01935.xSearch in Google Scholar PubMed PubMed Central
[39] Moser P, Telis VRN, Neves NDA, García-Romero E, Gómez-Alonso S, Hermosín-Gutiérrez I. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem. 2017;214:308–318.10.1016/j.foodchem.2016.07.081Search in Google Scholar PubMed
[40] Robert P, Gorena T, Romero N, Sepulveda E, Chavez J, Saenz C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int J Food Sci Technol. 2010;45(7):1386–1394.10.1111/j.1365-2621.2010.02270.xSearch in Google Scholar
[41] Kha TC, Nguyen MH, Roach PD. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J Food Eng. 2010;98:385–392.10.1016/j.jfoodeng.2010.01.016Search in Google Scholar
[42] Azofeifa G, Quesada S, Pérez AM, Vaillant F, Michel A. Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. J Food Compos Anal. 2015;42:56–62.10.1016/j.jfca.2015.01.015Search in Google Scholar
[43] Pitalua E, Jimenez M, Vernon-Carter EJ, Beristain CI. Antioxidative activity of microcapsules with beetroot juice using gum Arabic as wall material. Food Bioprod Process [Internet]. 2010 88(2–3):253–258 [cited 2016Dec20]. ElsevierAvailable from http://linkinghub.elsevier.com/retrieve/pii/S0960308510000039.10.1016/j.fbp.2010.01.002Search in Google Scholar
[44] Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S, et al. Cyanidins: Metabolism and biological properties. J Nutr Biochem. 2004;15(1):2–11.10.1016/j.jnutbio.2003.07.004Search in Google Scholar PubMed
[45] Kaume L, Gilbert WC, Brownmiller C, Howard LR, Devareddy L. Cyanidin 3-O-β-D-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats. J Funct Foods. 2012;4(2):480–488.10.1016/j.jff.2012.02.008Search in Google Scholar
[46] Aybastıer Ö, Isık E, Sahin S, Demir C. Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind Crops Prod. 2013;44:558–565.10.1016/j.indcrop.2012.09.022Search in Google Scholar
[47] Kuck LS, Noreña CPZ. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016;194:569–576.10.1016/j.foodchem.2015.08.066Search in Google Scholar PubMed
[48] Shen Q, Quek SY. Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. J Food Eng [Internet]. 2014;123:165–171. DOI:http://dx.doi.org/10.1016/j.jfoodeng.2013.09.002.10.1016/j.jfoodeng.2013.09.002Search in Google Scholar
[49] Medina-Torres L, Santiago-Adame R, Calderas F, Gallegos-Infante JA, González-Laredo RF, Rocha-Guzmánd NE, et al. Microencapsulation by spray drying of laurel infusions (Litsea glaucescens) with maltodextrin. Ind Crops Prod. 2016;90:1–8.10.1016/j.indcrop.2016.06.009Search in Google Scholar
[50] Alamilla-Beltrán L, Chanona-Pérez JJ, Jiménez-Aparicio AR, Gutiérrez-Ló Pez GF. Description of morphological changes of particles along spray drying. J Food Eng. 2005;67:179–184.10.1016/j.jfoodeng.2004.05.063Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Research articles
- Effect of Inulin DP on Various Properties of Sugar-Free Dark Chocolates Containing Lactobacillus paracasei and Lactobacillus acidophilus
- Comparative Studies on Physicochemical Properties of Bovine Serum Albumin–Glucose and Galactose Conjugates Formed by Glycation Combined with Ultrasonic Pretreatment
- Simplified Physical Upgrading of High-Acid Adlay Bran Ethanol Extracts by Supercritical CO2
- Moisture Transport Mechanism and Drying Kinetic of Fresh Harvested Red Onion Bulbs under Dehumidified Air
- Dynamic Water Mobility in Sea Cucumber (Stichopus japonicas) During Drying Process Assessed by LF-NMR and MRI in situ
- Effect of Addition of Antioxidant Flaxseed Polypeptide on the Rheological Properties of Native Maize Starch
- Assessment of Ferrous Glycinate Liposome Absorption Using in Situ Single-Pass Perfusion Model
- The Immunoreactive Protein was Produced During Absorption of Glycinin or its Hydrolysate in IPEC-J2
- Microencapsulation of Bioactive Compounds from Blackberry Pomace (Rubus fruticosus) by Spray Drying Technique
- Shorter communications
- Flow Analysis for a Flow Channel Instrument to Evaluate Viscosities of Non-Newtonian Viscoelastic Liquid Foods
Articles in the same Issue
- Research articles
- Effect of Inulin DP on Various Properties of Sugar-Free Dark Chocolates Containing Lactobacillus paracasei and Lactobacillus acidophilus
- Comparative Studies on Physicochemical Properties of Bovine Serum Albumin–Glucose and Galactose Conjugates Formed by Glycation Combined with Ultrasonic Pretreatment
- Simplified Physical Upgrading of High-Acid Adlay Bran Ethanol Extracts by Supercritical CO2
- Moisture Transport Mechanism and Drying Kinetic of Fresh Harvested Red Onion Bulbs under Dehumidified Air
- Dynamic Water Mobility in Sea Cucumber (Stichopus japonicas) During Drying Process Assessed by LF-NMR and MRI in situ
- Effect of Addition of Antioxidant Flaxseed Polypeptide on the Rheological Properties of Native Maize Starch
- Assessment of Ferrous Glycinate Liposome Absorption Using in Situ Single-Pass Perfusion Model
- The Immunoreactive Protein was Produced During Absorption of Glycinin or its Hydrolysate in IPEC-J2
- Microencapsulation of Bioactive Compounds from Blackberry Pomace (Rubus fruticosus) by Spray Drying Technique
- Shorter communications
- Flow Analysis for a Flow Channel Instrument to Evaluate Viscosities of Non-Newtonian Viscoelastic Liquid Foods