Startseite Comparison of Artificial Neural Network and Response Surface Methodology Performance on Fermentation Parameters Optimization of Bioconversion of Cashew Apple Juice to Gluconic Acid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparison of Artificial Neural Network and Response Surface Methodology Performance on Fermentation Parameters Optimization of Bioconversion of Cashew Apple Juice to Gluconic Acid

  • Omotola B. Osunkanmibi , Temitayo O. Owolabi und Eriola Betiku ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The study examined the impact and interactions of cashew apple juice (CAJ) concentration, pH, NaNO3 concentration, inoculum size and time on gluconic acid (GA) production in a central composite design (CCD). The fermentation process and parameters involved were modeled and optimized using artificial neural network (ANN) and response surface methodology (RSM). The ANN model established the optimum levels as CAJ of 250 g/l, pH of 4.21, NaNO3 of 1.51 g/l, inoculum size of 2.87% volume and time of 24.41 h with an actual GA of 249.99 g/l. The optimum levels predicted by RSM model for the five independent variables were CAJ of 249 g/l, pH of 4.6, NaNO3 of 2.29 g/l, inoculum size of 3.95% volume, and time of 38.9 h with an actual GA of 246.34 g/l. The ANN model was superior to the RSM model in predicting GA production. The study demonstrated that CAJ could serve as the sole carbon source for GA production.

Acknowledgements

Eriola Betiku gratefully acknowledges World University Service, Germany for equipment donation. The authors thank Mr. H.A. Emeko for technical assistance and Dr. M. Webb for proofreading the manuscript.

References

1. MukhopadhyayR, ChatterjeeS, ChatterjeeB, BanerjeeP, GuhaA. Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int Dairy J2005;15:299303.10.1016/j.idairyj.2004.07.010Suche in Google Scholar

2. RamachandranS, FontanilleP, PandeyA, LarrocheC. Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol2006;44:18595.Suche in Google Scholar

3. SinghO, SinghR. Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS‐4 410. J Appl Microbiol2006;100:111422.10.1111/j.1365-2672.2006.02870.xSuche in Google Scholar PubMed

4. DowdellsC, JonesR, MatteyM, BenčinaM, LegišaM, MousdaleD. Gluconic acid production by Aspergillus terreus. Lett Appl Microbiol2010;51:2527.10.1111/j.1472-765X.2010.02890.xSuche in Google Scholar PubMed

5. RaoDS, PandaT. Comparative analysis of calcium gluconate and sodium gluconate techniques for the production of gluconic acid by Aspergillus niger. Bioprocess Eng1993;8:2037.10.1007/BF00369830Suche in Google Scholar

6. RoehrM, KubicekCP, KomínekJc. Gluconic acid. Biotechnology Set, Second Edition. 1983: 347–62.10.1002/9783527620883.ch10Suche in Google Scholar

7. RoukasT. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotechnol2000;25:298304.10.1038/sj.jim.7000101Suche in Google Scholar PubMed

8. SinghOV, JainRK, SinghRP. Gluconic acid production under varying fermentation conditions by Aspergillus niger. J Chem Technol Biotechnol2003;78:20812.10.1002/jctb.748Suche in Google Scholar

9. BetikuE, AjalaO, LayokunS. Optimization of breadfruit hydrolysate medium for gluconic acid production by filamentous fungus Aspergillus niger. Ife J Technol2011;20:305.Suche in Google Scholar

10. BetikuE, JabarS, FetugaA, AdedoyinO, AdenekanM, AladeO. Gluconic acid production from breadfruit peel by filamentous fungus Aspergillus niger. The proceedings of the 26th International Conference on Solid Waste Technology and Management March 27–30, 2011, Philadelphia, PA USA. 2011: 98–108.Suche in Google Scholar

11. VassilevNB, VassilevaMC, SpassovaDI. Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam. Applied Microbiol Biotechnol1993;39:2858.10.1007/BF00192079Suche in Google Scholar PubMed

12. SinghO, KapurN, SinghR. Evaluation of agro-food byproducts for gluconic acid production by Aspergillus niger ORS-4.410. World J Microbiol Biotechnol2005;21:51924.10.1007/s11274-004-2395-xSuche in Google Scholar

13. IkedaY, ParkEY, OkudaN. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol2006;97:10305.10.1016/j.biortech.2005.04.040Suche in Google Scholar PubMed

14. LayokunS, ObawoleA, FatileI, SolomonB. Investigation of cashew apple juice as a substrate for single cell protein production. J Food Sci1986;51:2378.10.1111/j.1365-2621.1986.tb10882.xSuche in Google Scholar

15. OshoA. Evaluation of cashew apple juice for single cell protein and wine production. Food/Nahrung1995;39:5219.10.1002/food.19950390518Suche in Google Scholar

16. HonoratoTL, RabeloMC, GonçalvesLRB, PintoGAS, RodriguesS. Fermentation of cashew apple juice to produce high added value products. World J Microbiol Biotechnol2007;23:140915.10.1007/s11274-007-9381-zSuche in Google Scholar

17. FontesCP, HonoratoTL, RabeloMC, RodriguesS. Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosyst Eng2009;32:4939.10.1007/s00449-008-0269-6Suche in Google Scholar PubMed

18. RochaMV, OliveiraAH, SouzaMC, GonçalvesLR. Natural cashew apple juice as fermentation medium for biosurfactant production by Acinetobacter calcoaceticus. World J Microbiol Biotechnol2006;22:12959.10.1007/s11274-006-9175-8Suche in Google Scholar

19. EmekoHA, OlugbogiAO, BetikuE. Appraisal of artificial neural network and response surface methodology in modeling and process variable optimization of oxalic acid production from cashew apple juice: a case of surface fermentation. BioRes2015;10:206782.10.15376/biores.10.2.2067-2082Suche in Google Scholar

20. BaşD, BoyacıİH. Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng2007;78:84654.10.1016/j.jfoodeng.2005.11.025Suche in Google Scholar

21. BetikuE, TaiwoAE. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew Energy2015;74:8794.10.1016/j.renene.2014.07.054Suche in Google Scholar

22. BetikuE, AdesinaOA. Statistical approach to the optimization of citric acid production using filamentous fungus Aspergillus niger grown on sweet potato starch hydrolyzate. Biomass Bioenergy2013;55:3504.10.1016/j.biombioe.2013.02.034Suche in Google Scholar

23. ZobelCW, CookDF. Evaluation of neural network variable influence measures for process control. Eng Appl Artif Intel2011;24:80312.10.1016/j.engappai.2011.03.001Suche in Google Scholar

24. SakuraiH, LeeHW, SatoS, MukatakaS, TakahashiJ. Gluconic acid production at high concentrations by Aspergillus niger immobilized on a nonwoven fabric. J Ferment Bioeng1989;67:4048.10.1016/0922-338X(89)90049-4Suche in Google Scholar

25. MoyerA, WellsP, StubbsJ, HerrickH, MayO. Gluconic acid production effect of pressure, air flow and agitation on gluconic acid production by submerged mold growths. Ind Eng Chem1937;29:6536.10.1021/ie50330a012Suche in Google Scholar

26. RoukasT, HarveyL. The effect of pH on production of citric and gluconic acid from beet molasses using continuous culture. Biotechnol Lett1988;10:28994.10.1007/BF01024422Suche in Google Scholar

27. BoxGE, BehnkenDW. Some new three level designs for the study of quantitative variables. Technometrics1960;2:45575.10.1080/00401706.1960.10489912Suche in Google Scholar

28. MontgomeryDC. Design and analysis of experiments. New York: John Wiley & Sons, 2001.Suche in Google Scholar

29. MirhosseiniH, TanCP. Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chem2009;115:32433.10.1016/j.foodchem.2008.11.090Suche in Google Scholar

30. SaqibAAN, WhitneyPJ. Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono-and di-saccharide sugars. Biomass Bioenergy2011;35:474850.10.1016/j.biombioe.2011.09.013Suche in Google Scholar

31. MillerGL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analy Chem1959;31:4268.10.1021/ac60147a030Suche in Google Scholar

32. JoglekarA, MayA. Product excellence through design of experiments. Cereal Foods World1987;32:85768.Suche in Google Scholar

33. EbrahimpourA, RahmanRN, Ch’ngDHE, BasriM, SallehAB. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated Thermophilic geobacillus sp. Strain ARM. BMC Biotechnol2008;8:96.10.1186/1472-6750-8-96Suche in Google Scholar

34. ZnadH, MarkošJ, BalešV. Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions. Process Biochem2004;39:13415.10.1016/S0032-9592(03)00270-XSuche in Google Scholar

Published Online: 2015-5-22
Published in Print: 2015-6-1

©2015 by De Gruyter

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2015-0072/html?lang=de
Button zum nach oben scrollen