Abstract
A mathematical model for the rotary dryer that determines the total residence time is developed. Experiments were performed in a laboratory-scale direct contact rotary dryer with the gas flowing concurrently with the solids. The model predictions depicted that the total residence time decreases with increasing the inclination of the rotary drum, the speed of rotation and the radius of rotary drum. The validation of the model was carried out experimentally for maize while varying the inclination of the rotary drum and the speed of rotation. The experimental results were observed to be in good agreement with the model predictions.
Nomenclature
- h
Flight holdup (m3)
- L
Drum length (m)
- l
Distance between central axis and the point where cascading begins (m)
- N
Speed of rotation (rpm)
- n
Number of cascades
- s
The distance of longitudinal advance per cascade (m)
- α
Inclination of rotary drum (degrees)
- θi
Peripheral flight angle when cascading begins (degrees)
Acknowledgments
This research was supported by the Science and Technology Development Planning Program of Beijing Municipal Education Committee (No. KM200710011005).
References
1. PerazziniH, FreireFB, FreireJB. Prediction of residence time distribution of solid wastes in a rotary dryer. Drying Technol2014;32:428–36.10.1080/07373937.2013.835317Suche in Google Scholar
2. SunkaraKR, HerzF, SpechtE, MellmannJ, ErpeldingR. Modeling the discharge characteristics of rectangular flights in a flighted rotary drum. Powder Technol2013;234:107–16.10.1016/j.powtec.2012.09.007Suche in Google Scholar
3. Zarea HosseinabadiH, LayeghiM, BertholdD, DoosthosseiniK, ShahhosseiniS. Mathematical modeling the drying of poplar wood particles in a closed-loop triple pass rotary dryer. Drying Technol2014;32:55–67.10.1080/07373937.2013.811250Suche in Google Scholar
4. GengF, LiY, YuanL, LiuM, WangX, YuanZ, et al.. Experimental study on the space time of flexible filamentous particles in a rotary dryer. Exp Therm Fluid Sci2013;44:708–15.10.1016/j.expthermflusci.2012.09.011Suche in Google Scholar
5. IguazA, EsnozA, MartínezG, LópezA, VírsedaP. Mathematical modeling and simulation for the drying process of vegetable wholesale by-products in a rotary dryer. J Food Eng2003;59:151–60.10.1016/S0260-8774(02)00451-XSuche in Google Scholar
6. KalbagA, WassgrenC, PenumetchaSS, Pérez-RamosJD. Inter-tablet coating variability: residence times in a horizontal pan coater. Chem Eng Sci2008;63:2881–94.10.1016/j.ces.2008.03.009Suche in Google Scholar
7. BrittonPF, SheehanME, SchneiderPA. A physical description of solids transport in flighted rotary dryers. Powder Technol2006;165:153–60.10.1016/j.powtec.2006.04.006Suche in Google Scholar
8. CaoWF, LangrishTAG. Comparison of residence time models for cascading rotary dryers. Drying Technol1999;17:825–36.10.1080/07373939908917572Suche in Google Scholar
9. RenaudM, ThihaultJ, TrusiakA. Solids transportation model of an industrial rotary dryer. Drying Technol2000;18:843–65.10.1080/07373930008917741Suche in Google Scholar
10. ShahhosseiniS, CameronIT, WangFY. A simple dynamic model for solid transport in rotary dryers. Drying Technol2000;18:867–86.10.1080/07373930008917742Suche in Google Scholar
11. SheehanME, BrittonPF, SchneiderPA. A model for solids transport in flighted rotary dryers based on physical considerations. Chem Eng Sci2005;60:4171–82.10.1016/j.ces.2005.02.055Suche in Google Scholar
12. SongY, ThibaultJ, KudraT. Dynamic characteristics of particles transportation in rotary dryers. Drying Technol2003;21:755–73.10.1081/DRT-120021685Suche in Google Scholar
13. ArrudaEB, LobatoFS, AssisAJ, BarrozoMAS. Modeling of fertilizer drying in roto-aerated and conventional rotary dryers. Drying Technol2009;27:1192–8.10.1080/07373930903263129Suche in Google Scholar
14. CaoWF, LangrishTAG. The development and validation of a system model for a countercurrent cascading rotary dryer. Drying Technol2000;18:99–115.10.1080/07373930008917695Suche in Google Scholar
15. KempIC, OakleyDE. Simulation and scale-up of pneumatic conveying and cascading rotary dryers. Drying Technol1997;15:1699–710.10.1080/07373939708917319Suche in Google Scholar
16. Lobato Jr FS, SteffenV, ArrudaEB, BarrozoMAS. Estimation of drying parameters in rotary dryers using differential evolution. J Phys Conf Ser2008;135:1–8.10.1088/1742-6596/135/1/012063Suche in Google Scholar
17. ZabaniotouAA. Simulation of forestry biomass drying in a rotary dryer. Drying Technol2000;18:1415–31.10.1080/07373930008917785Suche in Google Scholar
18. HamawandI, YusafT. Particles motion in a cascading rotary drum dryer. Can J Chem Eng2014;92:648–62.10.1002/cjce.21845Suche in Google Scholar
19. LangrishTAG, PapadakisSE, BakerCGJ. Residence times of two- and three-component mixtures in cascading rotary dryers. Drying Technol2002;20:325–50.10.1081/DRT-120002545Suche in Google Scholar
20. FriedmanSJ, MarshallWR. Studies in rotary drying. Part I: holdup and dusting. Chem Eng Prog1949;45:482–93.Suche in Google Scholar
21. PerryRH, GreenD. Chemical engineers’ handbook. New York, NY: McGraw-Hill, 1984.Suche in Google Scholar
22. SaiPST, SurenderGD, DamodaranAD, SureshV, PhilipZG, SankaranV. Residence time distribution and material flow studies in rotary kiln. Metall Trans1990;21B:1005–11.10.1007/BF02670271Suche in Google Scholar
23. KellyJJ, O’DonnellP. Residence time model for rotary drums. Trans Inst Chem Eng1977;55:243–52.Suche in Google Scholar
24. PorterSJ. The design of rotary dryers and coolers. Trans Inst Chem Eng1963;41:272–80.Suche in Google Scholar
25. RenaudM, ThibaultJ, AlvarezPI. Influence of solids moisture content on the average residence time in a rotary dryer. Drying Technol2001;19:2131–50.10.1081/DRT-100107491Suche in Google Scholar
26. FernandesNJ, AtaídeCH, BarrozoMAS. Modeling and experimental study of hydrodynamic and drying characteristics of an industrial rotary dryer. Braz J Chem Eng2009;26:331–41.10.1590/S0104-66322009000200010Suche in Google Scholar
27. CastañoF, RubioFR, OrtegaMG. Modeling of a cocurrent rotary dryer. Drying Technol2012;30:839–49.10.1080/07373937.2012.668998Suche in Google Scholar
28. ThibaultJ, AlvarezPI, BlascoR, VegaR. Modeling the mean residence time in a rotary dryer for various types of solids. Drying Technol2010;28:1136–41.10.1080/07373937.2010.483045Suche in Google Scholar
29. SilvérioBC, FaçanhaJMF, ArrudaEB, MurataVV, BarrozoMAS. Fluid dynamics in concurrent rotary dryers and comparison of their performance with a modified dryer. Chem Eng Technol2011;34:81–6.10.1002/ceat.201000338Suche in Google Scholar
30. SaiPST. Drying of solids in a rotary dryer. Drying Technol2013;31:213–23.10.1080/07373937.2012.711406Suche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Soft Tofu-Type Gels: Relationship between Volatile Compounds and Sensory Characteristics as Affected by Coagulants and Raw Materials
- Preparation and Characterization of Genipin-Crosslinked Chitosan Microspheres for the Sustained Release of Salidroside
- A Numerical Approach to Determine Some Properties of Cylindrical Pieces of Bananas During Drying
- Pasting, Textural and Sensory Characteristics of the Kofter, A Fruit-Based Dessert: Effect of Molasses and Water Concentration
- Microwave-Assisted Extraction of Phenolic Compounds from Dried Waste Grape Skins
- Effect of Cooking Temperature on Mineral Content and Anti-nutritional Factors of Yam and Taro Grown in Southern Ethiopia
- Isolation of Linoleic Acid from Sambucus williamsii Seed Oil Extracted by High Pressure Fluid and Its Antioxidant, Antiglycemic, Hypolipidemic Activities
- Comparison of Artificial Neural Network and Response Surface Methodology Performance on Fermentation Parameters Optimization of Bioconversion of Cashew Apple Juice to Gluconic Acid
- Modeling the Total Residence Time in a Rotary Dryer
- Optimization of Spray Drying Process Parameters for Sweet Corn Enzymolysis Liquid
- Hot Air Drying Characteristics of Sukkari Date (Phoenix dactylifera L.) and Effects of Drying Condition on Fruit Color and Texture
- Effects of Air-Impingement Jet Drying on Drying Kinetics, Nutrient Retention and Rehydration Characteristics of Onion (Allium cepa) Slices
Artikel in diesem Heft
- Frontmatter
- Soft Tofu-Type Gels: Relationship between Volatile Compounds and Sensory Characteristics as Affected by Coagulants and Raw Materials
- Preparation and Characterization of Genipin-Crosslinked Chitosan Microspheres for the Sustained Release of Salidroside
- A Numerical Approach to Determine Some Properties of Cylindrical Pieces of Bananas During Drying
- Pasting, Textural and Sensory Characteristics of the Kofter, A Fruit-Based Dessert: Effect of Molasses and Water Concentration
- Microwave-Assisted Extraction of Phenolic Compounds from Dried Waste Grape Skins
- Effect of Cooking Temperature on Mineral Content and Anti-nutritional Factors of Yam and Taro Grown in Southern Ethiopia
- Isolation of Linoleic Acid from Sambucus williamsii Seed Oil Extracted by High Pressure Fluid and Its Antioxidant, Antiglycemic, Hypolipidemic Activities
- Comparison of Artificial Neural Network and Response Surface Methodology Performance on Fermentation Parameters Optimization of Bioconversion of Cashew Apple Juice to Gluconic Acid
- Modeling the Total Residence Time in a Rotary Dryer
- Optimization of Spray Drying Process Parameters for Sweet Corn Enzymolysis Liquid
- Hot Air Drying Characteristics of Sukkari Date (Phoenix dactylifera L.) and Effects of Drying Condition on Fruit Color and Texture
- Effects of Air-Impingement Jet Drying on Drying Kinetics, Nutrient Retention and Rehydration Characteristics of Onion (Allium cepa) Slices