Home Mathematical Modeling of Hot-Air Drying of Osmo-dehydrated Nectarines
Article
Licensed
Unlicensed Requires Authentication

Mathematical Modeling of Hot-Air Drying of Osmo-dehydrated Nectarines

  • M. Marcela Rodríguez , Rodolfo H. Mascheroni and Armando Quintero-Ramos EMAIL logo
Published/Copyright: June 20, 2015

Abstract

The influence of osmotic pretreatment on nectarines with solutions of glucose syrup and sorbitol and subsequent dehydration at different temperatures (60 °C, 70 °C, or 80 °C) was evaluated. The kinetics of moisture loss during drying was obtained and mathematical models were adjusted to estimate the kinetic parameters. Effective diffusion coefficients were calculated using Fick’s second law. All drying kinetics exhibited only a falling-rate period during hot-air drying owing to moisture loss in the osmotic pretreatment. Moisture loss was favoured by the use of sorbitol, whereas the diffusivity of water increased when glucose was used as an osmotic agent. Logarithmic and Midilli et al. models best described the changes in moisture over time, whereas Fick’s second law estimated water diffusion coefficient values between 4.96×10−9 and 2.43×10−8 m2 s−1. These models may be employed to predict the optimum conditions for osmo-dehydrating nectarines under hot-air drying at the industrial level.

References

1. FranklinM, BuSY, LernerMR, LancasterEA, BellmerD, MarlowD, et al. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone2006;39:133142.10.1016/j.bone.2006.05.024Search in Google Scholar PubMed

2. TarhanS. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures. J Food Eng2007;79:25560.10.1016/j.jfoodeng.2006.01.052Search in Google Scholar

3. GoncalvesB, SilvaAP, Moutinho PereiraJ, BacelarE, RosaE, MeyerAS. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries(Prunus avium L.). Food Chem2007;103:97684.10.1016/j.foodchem.2006.08.039Search in Google Scholar

4. De MichelisA, PironeBN, VullioudMB, OchoaMR, KesselerAG, Márquez CA Cambios de volumen, área superficial y factor de forma de heywood durante la deshidratación de cerezas(Prunus avium). Ciênc Tecnol Aliment Campinas2008;28:31721.10.1590/S0101-20612008000200008Search in Google Scholar

5. GilMI, Tomas BarberanFA, Hess-PierceB, KaderAA. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem2002;50:497682.10.1021/jf020136bSearch in Google Scholar PubMed

6. KhoyiMR, HesariJ. Osmotic dehydration kinetics of apricot using sucrose solution. J Food Eng2007;78:135560.10.1016/j.jfoodeng.2006.01.007Search in Google Scholar

7. IspirA, TogrulIT. Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chem Eng Res Design2009;87:16680.10.1016/j.cherd.2008.07.011Search in Google Scholar

8. AraujoEA, RibeiroSC, Moreira AzoubelPM, MurrFE. Drying kinetics of nectarine (Prunus persica) with and without shrinkage. In: Proceedings of the 14th International Drying Symposium (IDS 2004), 22–25 August 2004, São Paulo, Brazil, C, 2189–94.Search in Google Scholar

9. PavkovI, BabićLJ, BabićM, RadojčinM, StojanovićČ. Effects of osmotic pre-treatment on convective drying kinetics of nectarines halves(Pyrus persica L). J Process Energy Agric2011;15:21722.Search in Google Scholar

10. RodríguezMM, ArballoJR, CampañoneLA, CocconiMB, PaganoAM, MascheroniRH. Osmotic dehydration of nectarines: influence of the operating conditions and determination of the effective diffusion coefficients. Food Bioprocess Technol2013;6:270820.10.1007/s11947-012-0957-8Search in Google Scholar

11. MengesHO, ErtekinC. Mathematical modelling of thin layer drying of golden apples. J Food Eng2006;77:11925.10.1016/j.jfoodeng.2005.06.049Search in Google Scholar

12. SacilikK, ElicinAK. The thin layer drying characteristics of organic apple slices. J Food Eng2006;73:2819.10.1016/j.jfoodeng.2005.03.024Search in Google Scholar

13. VegaA, FitoP, AndrésA, LemusR. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng2007;79:14606.10.1016/j.jfoodeng.2006.04.028Search in Google Scholar

14. TogrulIT. Modelling of heat and moisture transport during drying black grapes. Int J Food Sci Technol2010;45:114652.10.1111/j.1365-2621.2010.02246.xSearch in Google Scholar

15. TreybalRE. Operaciones de transferencia de masa, Cap. 12 Secado. Universidad de Rhode Island, México, 2da ed.: McGrawHill, 1995.Search in Google Scholar

16. GeankoplisCJ. Procesos de transporte y operaciones unitarias, Cap. 9 Secado de materiales de proceso, Universidad de Minnesota, México, 3ra ed., Compañía Editorial Continental, S. A. de C. V. México 1998.Search in Google Scholar

17. Van ArselWB, CopleyMJ, MorganAI. Food dehydration, 2nd ed, vol. 1. Westport: Principles, AVI, 1973.Search in Google Scholar

18. SanjuánN, LozanoM, García-PascualP, MuletA. Dehydration kinetics of red pepper (Capsicum annuum L var jaranda). J Sci Food Agric2003;83:697701.10.1002/jsfa.1334Search in Google Scholar

19. ÜretirG, ÖzilgenM, KatnasS. Effects of velocity and temperature of air on the drying rate constants of apple cubes. J Food Eng1996;30:33950.10.1016/S0260-8774(96)00056-8Search in Google Scholar

20. SimalS, DeyáE, FrauM, RosellóC. Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apples cubes. J Food Eng1997;33:13950.10.1016/S0260-8774(97)00049-6Search in Google Scholar

21. FitoP, AndrésAM, BaratJM, AlborsAM. Introducción al secado de alimentos por aire caliente. España, Ed. Universidad Politécnica de Valencia, 2001.Search in Google Scholar

22. KeqingDX. Optimización del secado por aire caliente de pera (Variedad Blanquilla). Tesis doctoral, Universidad Politécnica de Valencia, España, 2004.Search in Google Scholar

23. CurcioSA. Multiphase model to analyze transport phenomena in food drying processes. Drying Technol2010;28:77385.10.1080/07373937.2010.482697Search in Google Scholar

24. ChuaKJ, MujumdarAS, HawladerMN, ChouSK, HoJC. Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Res Int2001;34:72131.10.1016/S0963-9969(01)00094-1Search in Google Scholar

25. DandamrongrakR, YoungG, MasonR. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. J Food Eng2002;55:13946.10.1016/S0260-8774(02)00028-6Search in Google Scholar

26. FernandesFA, RodriguesS, GasparetoOC, OliveiraEL. Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng2006;77:18893.10.1016/j.jfoodeng.2005.05.058Search in Google Scholar

27 RivaM, CampolongoS, LevaAA, MaestrelliA, TorreggianiD. Structure–property relationships in osmo-air-dehydrated apricot cubes. Food Res Int2008;38:53342.10.1016/j.foodres.2004.10.018Search in Google Scholar

28. MudaharGS, BuhrRJ, JenJJ. Infiltrated biopolymers effect on quality of dehydrated carrots. J Food Sci1991;57:5269.10.1111/j.1365-2621.1992.tb05533.xSearch in Google Scholar

29. OzenBF, DockLL, OzdemirM, FlorosJD. Processing factors affecting the osmotic dehydration of diced green peppers. Int J Food Sci Technol2002;37:497502.10.1046/j.1365-2621.2002.00606.xSearch in Google Scholar

30. Quintero-ChávezR, Quintero-RamosA, Jiménez-CastroJ, BarnardJ, Márquez-MeléndezR, Zazueta-MoralesJ, et al. Modeling of total soluble solid and NaCl uptake during osmotic treatment of bell peppers under different infusion pressures. Food Bioprocess Technol2012;5:18492.10.1007/s11947-010-0358-9Search in Google Scholar

31. MandalaIG, AnagnostarasEF, OikonomouCK. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J Food Eng2005;69:30716.10.1016/j.jfoodeng.2004.08.021Search in Google Scholar

32. SimalS, FemeniaA, GarauMC, RosellóC. Use of exponential models to simulate the drying kinetics of kiwi fruit. J Food Eng2005;66:3238.10.1016/j.jfoodeng.2004.03.025Search in Google Scholar

33. RodriguesS, FernandesFAN. Osmotic dehydration of melon in a ternary system followed by air drying. In 15th International Drying Symposium (IDS 2006), Budapest, Hungary, 20–23 August 2006.Search in Google Scholar

34. LombardGE, OliveiraJC, FitoP, AndrésA. Osmotic dehydration of pineapple as a pre-treatment for further drying. J Food Eng2008;85:27784.10.1016/j.jfoodeng.2007.07.009Search in Google Scholar

35. KaletaA, GórnickiK. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int J Food Sci Technol2010;45:8918.10.1111/j.1365-2621.2010.02230.xSearch in Google Scholar

36. MonneratSM, PizziRM, MauroTMA, MenegalliFC. Osmotic dehydration of apples in sugar/salt solutions: concentration profiles and effective diffusion coefficients. J Food Eng2010;100:60412.10.1016/j.jfoodeng.2010.05.008Search in Google Scholar

37. WangZ, SunJ, LiaoX, ChenF, ZhaoG, WuJ, et al. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res Int2007;40:3946.10.1016/j.foodres.2006.07.017Search in Google Scholar

38. SanderA, Prlíc KardumJ, GlasnovícA. Drying of solids: estimation of the mathematical model parameter. Can J Chem Eng2010;88:8229.10.1002/cjce.20346Search in Google Scholar

39. CrankJ. The mathematics of diffusion, 2nd ed. Oxford: Oxford University Press, 1975:479.Search in Google Scholar

40. AkbulutA, DurmusA. Thin layer solar drying and mathematical modeling of mulberry. Int J Energy Res2009;33:68795.10.1002/er.1504Search in Google Scholar

41. AOAC. Official methods of analysis. Washington, DC: Association of Official Analytical Chemists, 1980.Search in Google Scholar

42. Barbosa-CánovasGV, Vega-MercadoH. Deshidratación de Alimentos. Zaragoza, España: Ed. ACRIBIA S.A., 2000.Search in Google Scholar

43. CheftelJC, CheftelH. Introducción a la bioquímica y tecnología de los alimentos. Zaragoza, España: Ed. ACRIBIA S.A, 1992.Search in Google Scholar

44. MazzaG, LemaguerM. Dehydration of onion: some theoretical and practical considerations. J Food Technol1980;15:18194.10.1111/j.1365-2621.1980.tb00930.xSearch in Google Scholar

45. McMinnWA, McLoughlinCM, MageeTR. Thin-layer modeling of microwave, microwave-connective and microwave-vacuum drying of pharmaceutical powders. Drying Technol2005;23:51332.10.1081/DRT-200054126Search in Google Scholar

46. GhazanfariA, EmamiS, TabilLG, PanigrahiS. Thin-layer drying of flax fiber: II. Modeling drying process using semi-theoretical and empirical models. Drying Technol2006;24:163742.10.1080/07373930601031463Search in Google Scholar

47. LópezR, De ItaA, VacaM. Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Convers Manage2009;50:211926.10.1016/j.enconman.2009.04.014Search in Google Scholar

48. YaldizO, ErtekinC. Thin-layer solar drying of some vegetables. Drying Technol2001;19:58397.10.1081/DRT-100103936Search in Google Scholar

49. MidilliA, KucukH, YaparZ. A new model for single-layer drying. Drying Technol2002;20:150313.10.1081/DRT-120005864Search in Google Scholar

50. WilkinsonL. SYSTAT: The System for Statistics: Statistics, Evanston: SYSTAT 2007, Inc. version No. 12.02.00, 1990.Search in Google Scholar

51. DoymazI. Effect of dipping treatment on air drying of plums. J Food Eng2004;64:46570.10.1016/j.jfoodeng.2003.11.013Search in Google Scholar

52. Di RienzoJA, CasanovesF, BalzariniMG, GonzalezL, TabladaM, RobledoCW. InfoStat, versión 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Search in Google Scholar

53. FerrariCC, ArballoJR, MascheroniRH. Mass transfer and texture variation during osmotic dehydration of pears. In: Proceedings of 4th Inter-American Drying Conference, 2009; IV-17:610–616.Search in Google Scholar

54. Raoult-WackAL, GuilbertS, Le MaguerM, RíosG. Simultaneous water and solute transport in shrinking media –part 1. Application to dewatering and impregnation soaking process analysis (osmotic dehydration). Drying Technol1991;9:589612.10.1080/07373939108916698Search in Google Scholar

55. CháferM, González-MartínezC, OrtoláMD, ChiraltA, FitoP. Kinetics of osmotic dehydration in orange and mandarin peels. J Food Process Eng2001;24:27389.10.1111/j.1745-4530.2001.tb00544.xSearch in Google Scholar

56. Emam-DjomehZ, DjelvehG, GrosJB. Osmotic dehydration of foods in a multicomponent solution parte I. Lowering of solute uptake in agar gel: diffusion considerations. Food Sci Technol2001;34:31218.10.1006/fstl.2001.0776Search in Google Scholar

57. Moreira AzoubelP, MurrFE. Mass transfer kinetics of osmotic dehydration of cherry tomato. J Food Eng2004;61:2915.10.1016/S0260-8774(03)00132-8Search in Google Scholar

58. AntonioGC, KurozawaLE, Xidieh MurrFE, ParkKJ. Otimização da desidratação osmótica de batata doce (Ipomoea batatas) utilizando metodologia de superfície de resposta. Braz J Food Technol2006;9:13541.Search in Google Scholar

59. BorinI, FrascareliEC, MauroMA, KimuraM. Efeito do prétratamento osmótico com sacarose e cloreto de sódio sobre a secagem convectiva de abóbora. Ciênc Tecnol Aliment2008;28:3950.10.1590/S0101-20612008000100008Search in Google Scholar

60. AkpinarEK, BicerY, YildizC. Thin layer drying of red pepper. J Food Eng2003;59:99104.10.1016/S0260-8774(02)00425-9Search in Google Scholar

61. AkpinarEK, SarsılmazC, YildizC. Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. Int J Energy Res2004;28:73952.10.1002/er.997Search in Google Scholar

62. LahsasniS, KouhilaM, MahrouzM, Ait MohamedL, AgorramB. Characteristic drying curve and mathematical modeling of thin layer solar drying of prickly pear cladode (Opuntia ficus indica). J Food Process Eng2004;27:10317.10.1111/j.1745-4530.2004.tb00625.xSearch in Google Scholar

63. BaratJM, ChiraltA, FitoP. Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Sci Technol Int2001;7:4516.10.1177/108201301772660529Search in Google Scholar

64. SenadeeraW, BhandariBR, YoungG, WijesingheB. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J Food Eng2003;58:27783.10.1016/S0260-8774(02)00386-2Search in Google Scholar

65. SankatCK, CastaigneF. Foaming and drying behaviour of ripe bananas. Lebensmittel-Wissenschaft Und-Technologie2004;37:17525.10.1016/S0023-6438(03)00132-4Search in Google Scholar

66. DoymazI. Drying characteristics and kinetics of okra. J Food Eng2005;69:2759.10.1016/j.jfoodeng.2004.08.019Search in Google Scholar

67. RivaM, CampolongoS, LevaAA, MaestrelliA, TorreggianiD. Structure-property relationships in osmo-air-dehydrated apricot cubes. Food Res Int2005;38:53342.10.1016/j.foodres.2004.10.018Search in Google Scholar

68. WangJ, XiYS. Drying characteristics and drying quality of carrot using a two-stage microwave process. J Food Eng2005;68:50511.10.1016/j.jfoodeng.2004.06.027Search in Google Scholar

69. MaskanA, KayaS, MaskanM. Hot air and sun drying of grape leather (pestil). J Food Eng2002;54:818.10.1016/S0260-8774(01)00188-1Search in Google Scholar

70. AkpinarE, MidilliA, BicerY. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers Manage2003;44:1689705.10.1016/S0196-8904(02)00171-1Search in Google Scholar

71. VelicD, PlaninicM, TomasS, BelicM. Influence of airflow velocity on kinetics of convection apple drying. J Food Eng2004;64:97102.10.1016/j.jfoodeng.2003.09.016Search in Google Scholar

72. RayaguruK, RoutrayW, MohantySN. Mathematical modeling and quality parameters of air-dried betel leaf (Piper beatle L). J Food Process Preserv2010;35:2729.10.1111/j.1745-4549.2010.00480.xSearch in Google Scholar

Published Online: 2015-6-20
Published in Print: 2015-8-1

©2015 by De Gruyter

Downloaded on 12.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2014-0329/pdf
Scroll to top button