Startseite Influence of Different Wall Materials on the Microencapsulation of Virgin Coconut Oil by Spray Drying
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Different Wall Materials on the Microencapsulation of Virgin Coconut Oil by Spray Drying

  • Yen Yi Hee , Chin Ping Tan , Russly Abdul Rahman , Noranizan Mohd Adzahan , Wee Ting Lai und Gun Hean Chong EMAIL logo
Veröffentlicht/Copyright: 7. Januar 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main objective of this study was to evaluate the influence of the different wall material combinations on the microencapsulation of virgin coconut oil (VCO) by spray drying. Maltodextrin (MD) and sodium caseinate (SC) were used as the basic wall materials and mixed with gum Arabic (GA), whey protein concentrate (WPC) and gelatin (G). The stability, viscosity and droplet size of the feed emulsions were measured. MD:SC showed the best encapsulation efficiency (80.51%) and oxidative stability while MD:SC:GA presented the lowest encapsulation efficiency (62.93%) but better oxidative stability than the other two combinations. Microcapsules produced were sphere in shape with no apparent fissures and cracks, low moisture content (2.35–2.85%) and high bulk density (0.23–0.29 g/cm3). All the particles showed relatively low peroxide value (0.34–0.82 meq peroxide/kg of oil) and good oxidative stability during storage. MD:SC:GA microencapsulated VCO had the highest antioxidant activity in both of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) (0.22 mmol butylated hydroxyanisole (BHA)/kg of oil) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays (1.35 mmol trolox/kg of oil).

Funding statement: Funding: Universiti Putra Malaysia, (Grant / Award Number: ‘Geran Putra Universiti Putra Malaysia 9419700’)

Acknowledgments

Financial support of this study was provided by Geran Putra Universiti Putra Malaysia, vot number 9419700. We gratefully acknowledge Adirondack (M) Sdn. Bhd. for supplying the virgin coconut oil.

References

1. NevinKG, RajamohanT. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin Biochem2004;37:8305.10.1016/j.clinbiochem.2004.04.010Suche in Google Scholar

2. NevinKG, RajamohanT. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chem2006;99:2606.10.1016/j.foodchem.2005.06.056Suche in Google Scholar

3. DebMandalM, MandalS. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac J Trop Med2011;4:2417.10.1016/S1995-7645(11)60078-3Suche in Google Scholar

4. GharsallaouiA, RoudautG, ChambinO, VoilleyA, SaurelR. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int2007;40:110721.10.1016/j.foodres.2007.07.004Suche in Google Scholar

5. KandansamyK, SomasundaramPD. Microencapsulation of colors by spray drying - a review. Int J Food Eng2012;8:2.10.1515/1556-3758.2647Suche in Google Scholar

6. HartwigVG, Ponce CevallosPA, SchmalkoME, BrumovskyLA. Effects of spray drying conditions on the stability and antioxidant properties of spray-dried soluble maté. Int J Food Eng2014;10:1318.10.1515/ijfe-2012-0124Suche in Google Scholar

7. CarneiroHCF, TononRV, GrossoCRF, HubingerMD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng2013;115:44351.10.1016/j.jfoodeng.2012.03.033Suche in Google Scholar

8. CalvoP, TeresaH, LozanoM, González-GómezD. Microencapsulation of extra-virgin olive oil by spray-drying: influence of wall material and olive quality. Eur J Lipid Sci Technol2010;112:7.10.1002/ejlt.201000059Suche in Google Scholar

9. LaohasongkramK, MahamaktudsaneeT, ChaiwanichsiriS. Microencapsulation of macadamia oil by spray drying. Procedia Food Sci2011;1:16605.10.1016/j.profoo.2011.09.245Suche in Google Scholar

10. DruschS, SerfertY, Van Den HeuvelA, SchwarzK. Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Res Int2006;39:80715.10.1016/j.foodres.2006.03.003Suche in Google Scholar

11. TurchiuliC, FuchsM, BohinM, CuvelierME, OrdonnaudC, Peyrat-MaillardMN, et al. Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Sci Emerg Technol2005;6:2935.10.1016/j.ifset.2004.11.005Suche in Google Scholar

12. SarkarS, GuptaS, VariyarPS, SharmaA, SinghalRS. Irradiation depolymerized guar gum as partial replacement of gum arabic for microencapsulation of mint oil. Carbohydr Polym2012;90:168594.10.1016/j.carbpol.2012.07.051Suche in Google Scholar PubMed

13. AhnJ-H, KimY-P, LeeY-M, SeoE-M, LeeK-W, KimH-S. Optimization of microencapsulation of seed oil by response surface methodology. Food Chem2008;107:98105.10.1016/j.foodchem.2007.07.067Suche in Google Scholar

14. JafariSM, AssadpoorE, HeY, BhandariB. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol2008;26:81635.10.1080/07373930802135972Suche in Google Scholar

15. CalvoP, CastañoÁL, LozanoM, González-GómezD. Influence of the microencapsulation on the quality parameters and shelf-life of extra-virgin olive oil encapsulated in the presence of BHT and different capsule wall components. Food Res Int2012;45:25661.10.1016/j.foodres.2011.10.036Suche in Google Scholar

16. GallardoG, GuidaL, MartinezV, LópezMC, BernhardtD, BlascoR, et al. Microencapsulation of linseed oil by spray drying for functional food application. Food Res Int2013;52:47382.10.1016/j.foodres.2013.01.020Suche in Google Scholar

17. AghbashloM, MobliH, MadadlouA, RafieeS. The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Res Int2012;49:37988.10.1016/j.foodres.2012.07.031Suche in Google Scholar

18. Sahin-NadeemH, Afşin ÖzenM. Physical properties and fatty acid composition of pomegranate seed oil microcapsules prepared by using starch derivatives/whey protein blends. Eur J Lipid Sci Technol2014;116:84756.10.1002/ejlt.201300355Suche in Google Scholar

19. ThirundasR, GadheKS, SyedIH. Optimization of wall material concentration in preparation of flaxseed oil powder using response surface methodology. J Food Process Preserv2012;38:88995.10.1111/jfpp.12043Suche in Google Scholar

20. TatarF, KahyaogluT. Microencapsulation of anchovy (Engraulis encrasicolus L.) oil: emulsion characterization and optimization by response surface methodology. J Food Process Preserv2014. DOI: 10.1111/jfpp.1227010.1111/jfpp.12270Suche in Google Scholar

21. FrascareliEC, SilvaVM, TononRV, HubingerMD. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod Process2012;90:41324.10.1016/j.fbp.2011.12.002Suche in Google Scholar

22. ManirakizaP, CovaciA, SchepensP. Comparative study on total lipid determination using soxhlet, roese-gottlieb, bligh & dyer, and modified bligh & dyer extraction methods. J Food Compos Anal2001;14:93100.10.1006/jfca.2000.0972Suche in Google Scholar

23. International Dairy Federation. International IDF Standards, Section 74A, 1991.Suche in Google Scholar

24. LeeJ, ChungH, ChangP-S, LeeJ. Development of a method predicting the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Food Chem2007;103:6629.10.1016/j.foodchem.2006.07.052Suche in Google Scholar

25. UluataS, ÖzdemirN. Antioxidant activities and oxidative stabilities of some unconventional oilseeds. J Am Oil Chem Soc2012;89:5519.10.1007/s11746-011-1955-0Suche in Google Scholar PubMed PubMed Central

26. TononRV, GrossoCRF, HubingerMD. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res Int2011;44:2829.10.1016/j.foodres.2010.10.018Suche in Google Scholar

27. GoulaAM, AdamopoulosKG. A method for pomegranate seed application in food industries: seed oil encapsulation. Food Bioprod Process2012;90:63952.10.1016/j.fbp.2012.06.001Suche in Google Scholar

28. SurhJ, WardLS, McClementsDJ. Ability of conventional and nutritionally-modified whey protein concentrates to stabilize oil-in-water emulsions. Food Res Int2006;39:76171.10.1016/j.foodres.2006.01.007Suche in Google Scholar

29. UmeshaSS, MonaharB, NaiduKA. Microencapsulation of α-linolenic acid-rich garden cress seed oil: physical characteristics and oxidative stability. Eur J Lipid Sci Technol2013;115:147482.10.1002/ejlt.201300181Suche in Google Scholar

30. VegaC, KimEHJ, ChenXD, RoosYH. Solid-state characterization of spray-dried ice cream mixes. Colloids Surf B2005;45:6675.10.1016/j.colsurfb.2005.07.009Suche in Google Scholar PubMed

31. CalvoP, CastañoÁL, LozanoM, González-GómezD. Micro-encapsulation of refined olive oil: influence of capsule wall components and the addition of antioxidant additives on the shelf life and chemical alteration. J Sci Food Agric2012;92:268995.10.1002/jsfa.5689Suche in Google Scholar PubMed

32. KimYD, MorrCV. Microencapsulation properties of gum arabic and several food proteins: spray-dried orange oil emulsion particles. J Agr Food Chem1996;44:131420.10.1021/jf9503927Suche in Google Scholar

33. DickinsonE. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids2003;17:2539.10.1016/S0268-005X(01)00120-5Suche in Google Scholar

34. PourashouriP, ShabanpourB, RazaviS, JafariS, ShabaniA, AubourgS. Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food Bioprocess Technol2014;7:235465.10.1007/s11947-013-1241-2Suche in Google Scholar

35. NijdamJJ, LangrishTAG. The effect of surface composition on the functional properties of milk powders. J Food Eng2006;77:91925.10.1016/j.jfoodeng.2005.08.020Suche in Google Scholar

36. FernandesRVB, BorgesSV, BotrelDA, SilvaEK, CostaJMGD, QueirozF. Microencapsulation of rosemary essential oil: characterization of particles. Drying Technol2013;31:124554.10.1080/07373937.2013.785432Suche in Google Scholar

37. AghbashloM, MobliH, RafieeS, MadadlouA. Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technol2012;225:10717.10.1016/j.powtec.2012.03.040Suche in Google Scholar

38. MoigradeanD, PoianaM-A, GogoasaI. Quality characteristics and oxidative stability of coconut oil during storage. J Agroaliment Proc Technol2012;18:2726.Suche in Google Scholar

39. FuchsM, TurchiuliC, BohinM, CuvelierME, OrdonnaudC, Peyrat-MaillardMN, et al. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng2006;75:2735.10.1016/j.jfoodeng.2005.03.047Suche in Google Scholar

40. DruschS, BergS, ScampicchioM, SerfertY, SomozaV, ManninoS, et al. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients. Food Hydrocolloids2009;23:9428.10.1016/j.foodhyd.2008.07.004Suche in Google Scholar

41. AugustinMA, SanguansriL. Maillard reaction BO products as encapsulants for fish oil powders. J Food Sci2006;71:E25E32.10.1111/j.1365-2621.2006.tb08893.xSuche in Google Scholar

Published Online: 2015-1-7
Published in Print: 2015-2-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Research Articles
  3. Investigation of UF and MF Membrane Residual Fouling in Full-Scale Dairy Production Using FT-IR to Quantify Protein and Fat
  4. Mathematical Modeling of Betanin Extraction from Red Beet (Beta vulgaris L.) by Solid–Liquid Method
  5. Rapid Discrimination of Apple Varieties via Near-Infrared Reflectance Spectroscopy and Fast Allied Fuzzy C-Means Clustering
  6. Formulation Development of Multilayered Fish Oil Emulsion by using Electrostatic Deposition of Charged Biopolymers
  7. Reduction of Turbidity of Beet Sugar Solutions by Mechanical and Chemical Treatment
  8. Purification of a Bacteriocin from Lactobacillus plantarum ZJ217 Active Against Methicillin-Resistant Staphylococcus aureus
  9. Influence of Different Wall Materials on the Microencapsulation of Virgin Coconut Oil by Spray Drying
  10. A CFD Study of the Effects of Feed Diameter on the Pressure Drop in Acyclone Separator
  11. Electrolyzed Water Generated Using a Circulating Reactor
  12. Determination of Volatile Compounds of Chinese Traditional Aromatic Sunflower Seeds (Helianthus annulus L.)
  13. Static Rheological Study of Ocimum basilicum Seed Gum
  14. Finite Element Model to Predict the Bioconversion Rate of Glucose to Fructose using Escherichia coli K12 for Sugar Production from Date
  15. Influence of Hot Bed Spray Dryer Parameters on Physical Properties of Peppermint (Mentha piperita L.) Tea Powder
  16. Foam-Mat Drying of Muskmelon
  17. Simulating Continuous Time Production Flows in Food Industry by Means of Discrete Event Simulation
  18. Shorter Communication
  19. Effect of Vacuum Soaking on the Properties of Soybean (Glycine max (L.) Merr.)
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2014-0215/html?lang=de
Button zum nach oben scrollen