Startseite Nanomaterials in solar still: recent advances and future perspectives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanomaterials in solar still: recent advances and future perspectives

  • Vijay Kishorbhai Mehta und Hitesh Panchal ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Access to clean and safe drinking water remains a global challenge, particularly in remote and coastal regions where freshwater sources are scarce or contaminated by seawater. Solar stills have emerged as an eco-friendly and sustainable solution to address these challenges by harnessing plentiful solar energy for water distillation. Despite its potential, the widespread adoption of solar still has been hindered by low productivity and intermittent sunlight throughout the day. To overcome these barriers, researchers worldwide have explored a wide array of performance enhancements in active and passive solar still modifications, as well as design modifications to the integration of fins, nanocoatings, and phase-change materials (PCM). This review explores the application of nanomaterials in both active and passive solar stills. It highlights recent advancements, outlines current challenges, and identifies key areas for future research. The integration of nanotechnology into solar stills holds significant promise for enhancing the efficiency of water purification systems, thereby contributing to sustainable solutions for global water scarcity issues.


Corresponding author: Hitesh Panchal, Department of Mechanical Engineering, Government Engineering College Patan, Gujarat, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have equal contributions.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: Not applicable.

  6. Research funding: The authors extend their appreciation to the Researchers Supporting Project number (CTE/Research Promotion- STEM/LA/2023-24/1175), Commissionerate of Technical Education, Education Department, Govt. of Gujarat, India.

  7. Data availability: None declared.

References

[1] F. E. Ahmed, R. Hashaikeh, and N. Hilal, “Solar powered desalination – technology, energy and future outlook,” Desalination, vol. 453, pp. 54–76, 2019, https://doi.org/10.1016/j.desal.2018.12.002.Suche in Google Scholar

[2] S. N. Gosling and N. W. Arnell, “A global assessment of the impact of climate change on water scarcity,” Climat. Change, vol. 134, pp. 371–85, 2016, https://doi.org/10.1007/s10584-013-0853-x.Suche in Google Scholar

[3] T. Luo, R. Young, and P. Reig, “Aqueduct projected water stress country rankings,” Tech. Note, vol. 16, pp. 1–6, 2015.Suche in Google Scholar

[4] A. K. Makarigakis and B. E. Jimenez-Cisneros, “UNESCO’s contribution to face global water challenges,” Water, vol. 11, no. 2, p. 388, 2019, https://doi.org/10.3390/w11020388.Suche in Google Scholar

[5] A. Boretti and L. Rosa, “Reassessing the projections of the world water development report,” NPJ Clean Water, vol. 2, no. 1, p. 15, 2019, https://doi.org/10.1038/s41545-019-0039-9.Suche in Google Scholar

[6] M. O. Raimi, A. A. Ayibatonbira, B. Anu, O. E. Odipe, N. S. Deinkuro, and N. D. Sanchez, “‘Digging deeper’ evidence on water crisis and its solution in Nigeria for Bayelsa state: a study of current scenario,” Int. J. Hydro, vol. 3, no. 4, pp. 244–57, 2019, https://doi.org/10.15406/ijh.2019.03.00187.Suche in Google Scholar

[7] H. Panchal and K. K. Sadasivuni, “Experimental investigation on solar still with nanomaterial and dripping arrangement,” Energy Sources, Part A: Recovery, Util. Environ. Eff., vol. 47, no. 1, pp. 1886–1896, 2025. https://doi.org/10.1080/15567036.2020.1834647.Suche in Google Scholar

[8] H. A. E. D. Mohamad, M. Hemdan, A. A. E. D. Bastawissi, A. E. D. M. Bastawissi, H. Panchal, and K. K. Sadasivuni, “Industrial wastewater treatment by electrocoagulation powered by a solar photovoltaic system,” Energy Sources, Part A: Recovery, Util. Environ. Eff., vol. 47, no. 1, pp. 9479–9489, 2025. https://doi.org/10.1080/15567036.2021.1950870.Suche in Google Scholar

[9] V. K. Mehta, H. Panchal, B. Singh, and L. Kumar, “Revolutionizing solar water distillation: maximizing efficiency with pyramid solar stills enhanced by fins, evacuated tubes, nanomaterial, and phase change materials – a comprehensive review,” Int J Low-Carbon Technol., vol. 19, pp. 1996–2009, 2024. https://doi.org/10.1093/ijlct/ctae116.Suche in Google Scholar

[10] L. Mu, et al.., “An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective,” Renew. Sustain. Energy Rev., vol. 150, 2021, Art. no. 111458, https://doi.org/10.1016/j.rser.2021.111458.Suche in Google Scholar

[11] M. Shatat and S. B. Riffat, “Water desalination technologies utilizing conventional and renewable energy sources,” Int. J. Low-Carbon Technol., vol. 9, no. 1, pp. 1–9, 2014, https://doi.org/10.1093/ijlct/cts025.Suche in Google Scholar

[12] S. A. El-Agouz, et al.., “Solar thermal feed preheating techniques integrated with membrane distillation for seawater desalination applications: recent advances, retrofitting performance improvement strategies, and future perspectives,” Process Saf. Environ. Prot., vol. 164, pp. 595–612, 2022, https://doi.org/10.1016/j.psep.2022.06.044.Suche in Google Scholar

[13] S. M. Fale and S. Dogra, “A review of the use of nanoparticles on performance of solar stills,” J. Phys. Conf., vol. 2267, no. 1, 2022, Art. no. 012121, https://doi.org/10.1088/1742-6596/2267/1/012121.Suche in Google Scholar

[14] D. D. Rufuss, S. Iniyan, L. Suganthi, and P. A. Davies, “Solar stills: a comprehensive review of designs, performance and material advances,” Renew. Sustain. Energy Rev., vol. 63, pp. 464–96, 2016, https://doi.org/10.1016/j.rser.2016.05.068.Suche in Google Scholar

[15] G. N. Tiwari, H. N. Singh, and R. Tripathi, “Present status of solar distillation,” Sol. Energy, vol. 75, no. 5, pp. 367–73, 2003, https://doi.org/10.1016/j.solener.2003.07.005.Suche in Google Scholar

[16] M. Shinde, R. Navthar, and S. M. Shinde, “Review on the types of solar stills,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 1420–8, 2022, https://doi.org/10.1080/01430750.2019.1707114.Suche in Google Scholar

[17] O. Younis, et al.., “Comprehensive review on solar stills—latest developments and overview,” Sustainability, vol. 14, no. 16, 2022, Art. no. 10136, https://doi.org/10.3390/su141610136.Suche in Google Scholar

[18] V. Kapoor, D. D. Rufuss, S. Arulvel, T. Akinaga, and P. A. Davies, “Nanoparticles-enhanced energy storage materials in solar thermal desalination,” in Energy Storage for Multigeneration, Cambridge, MA, Academic Press, 2023, pp. 197–220.10.1016/B978-0-12-821920-1.00005-4Suche in Google Scholar

[19] W. S. Choong, Z. Y. Ho, and R. Bahar, “Solar desalination using Fresnel lens as concentrated solar power device: an experimental study in tropical climate,” Front. Energy Res., vol. 8, 2020, Art. no. 565542, https://doi.org/10.3389/fenrg.2020.565542.Suche in Google Scholar

[20] A. H. Mohammed, A. N. Shmroukh, N. M. Ghazaly, and A. E. Kabeel, “Active solar still with solar concentrating systems, review,” J. Therm. Anal. Calorim., vol. 148, no. 17, pp. 8777–92, 2023, https://doi.org/10.1007/s10973-023-12285-z.Suche in Google Scholar

[21] G. N. Tiwari and L. Sahota, Advanced Solar-Distillation Systems: Basic Principles, Thermal Modeling, and Its Application, Cham, Switzerland, Springer, 2017.Suche in Google Scholar

[22] A. E. Kabeel, Z. M. Omara, and M. M. Younes, “Techniques used to improve the performance of the stepped solar still—a review,” Renew. Sustain. Energy Rev., vol. 46, pp. 178–88, 2015, https://doi.org/10.1016/j.rser.2015.02.053.Suche in Google Scholar

[23] K. Sampathkumar, T. V. Arjunan, P. Pitchandi, and P. Senthilkumar, “Active solar distillation—a detailed review,” Renew. Sustain. Energy Rev., vol. 14, no. 6, pp. 1503–26, 2010, https://doi.org/10.1016/j.rser.2010.01.023.Suche in Google Scholar

[24] F. T. Jodah, W. H. Alawee, H. A. Dhahad, and Z. M. Omara, “Comparative analysis of design parameters impacting the performance of pyramidal and spherical solar stills: a review,” Desalin. Water Treat., vol. 19, 2024, Art. no. 100545, https://doi.org/10.1016/j.dwt.2024.100545.Suche in Google Scholar

[25] V. Nagaraju, G. Murali, M. Sankeerthana, and M. Murugan, “A review on recent developments of solar stills to enhance productivity using nanoparticles and nano-PCM,” Int. J. Green Energy, 2021, Art. no. 1956935.10.1080/15435075.2021.1956935Suche in Google Scholar

[26] O. Bait and M. Si–Ameur, “Enhanced heat and mass transfer in solar stills using nanofluid: a review,” Sol. Energy, vol. 170, pp. 694–722, 2018.10.1016/j.solener.2018.06.020Suche in Google Scholar

[27] A. Kamyar, R. Saidur, and M. Hasanuzzaman, “Application of computational fluid dynamics (CFD) for nanofluid,” Int. J. Heat Mass Transfer, vol. 55, nos. 15-16, pp. 4104–15, 2012, https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.052.Suche in Google Scholar

[28] T. Elango, A. Kannan, and K. K. Murugavel, “Performance study on single basin single slope solar still with different water nanofluid,” Desalination, vol. 360, pp. 45–51, 2015.10.1016/j.desal.2015.01.004Suche in Google Scholar

[29] A. R. Ali and B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application,” SN Appl. Sci., vol. 2, no. 10, p. 1636, 2020, https://doi.org/10.1007/s42452-020-03427-1.Suche in Google Scholar

[30] Z. Said, et al.., “Nano-enhanced phase change materials: fundamentals and applications,” Prog. Energy Combust. Sci., vol. 104, 2024, Art. no. 101162, https://doi.org/10.1016/j.pecs.2024.101162.Suche in Google Scholar

[31] A. Sangeetha, et al.., “A review on PCM and nanofluid for various productivity enhancement methods for double slope solar still: future challenge and current water issues,” Desalination, vol. 551, 2023, Art. no. 116367, https://doi.org/10.1016/j.desal.2022.116367.Suche in Google Scholar

[32] B. Mehta, D. Subhedar, H. Panchal, and Z. Said, “Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid – a review,” J. Mol. Liq., vol. 364, 2022, Art. no. 120034, https://doi.org/10.1016/j.molliq.2022.120034.Suche in Google Scholar

[33] G. F. Smaisim, et al.., “Retracted article: nanofluid: properties and applications,” J. Sol-Gel Sci. Technol., vol. 104, no. 1, pp. 1–35, 2022, https://doi.org/10.1007/s10971-022-05859-0.Suche in Google Scholar

[34] M. S. Gad, et al.., “A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors,” Fuel, vol. 339, 2023, Art. no. 127364, https://doi.org/10.1016/j.fuel.2022.127364.Suche in Google Scholar

[35] T. Sathish, et al.., “Zero emission/energy building heating through parabolic dish collector focused KNO3–NaNO3 and KNO3–NaNO3–NaNO2 PCM absorber: a case study,” Case Stud. Therm. Eng., vol. 44, 2023, Art. no. 102854, https://doi.org/10.1016/j.csite.2023.102854.Suche in Google Scholar

[36] S. Rashidi, N. Karimi, O. Mahian, and J. Abolfazli Esfahani, “A concise review on the role of nanoparticles upon the productivity of solar desalination systems,” J. Therm. Anal. Calorim., vol. 135, pp. 1145–59, 2019, https://doi.org/10.1007/s10973-018-7500-8.Suche in Google Scholar

[37] S. W. Sharshir, et al.., “Energy and exergy analysis of solar stills with micro/nano particles: a comparative study,” Energy Convers. Manag., vol. 177, pp. 363–75, 2018, https://doi.org/10.1016/j.enconman.2018.09.074.Suche in Google Scholar

[38] G. Peng, et al.., “Potential and challenges of improving solar still by micro/nano-particles and porous materials - a review,” J. Clean. Prod., vol. 311, 2021, Art. no. 127432, https://doi.org/10.1016/j.jclepro.2021.127432.Suche in Google Scholar

[39] H. B. Bacha, N. Ullah, A. Hamid, and N. A. Shah, “A comprehensive review on nanofluid: synthesis, cutting-edge applications, and future prospects,” Int. J. Thermofluids, 2024, Art. no. 100595, https://doi.org/10.1016/j.ijft.2024.100595.Suche in Google Scholar

[40] V. K. Thakur, M. K. Gaur, A. K. Dhamneya, and M. K. Sagar, “Performance analysis of passive solar still with and without nanoparticles,” Mater. Today: Proc., Vol. 47, pp. 6309–16, 2021 https://doi.org/10.1016/j.matpr.2021.05.539.Suche in Google Scholar

[41] A. Alenezi and Y. Alabaiadly, “A comprehensive review of performance augmentation of solar stills using common non-metallic nanofluid,” Sustainability, vol. 15, no. 13, 2023, Art. no. 10122, https://doi.org/10.3390/su151310122.Suche in Google Scholar

[42] Z. M. Omara, M. M. Ahmed, W. H. Alawee, S. Shanmugan, and M. Elashmawy, “A comprehensive review of nano-enhanced phase change materials on solar stills with scientometric analysis,” Res. Eng., 2024, Art. no. 102088, https://doi.org/10.1016/j.rineng.2024.102088.Suche in Google Scholar

[43] F. Khlissa, et al.., “Recent advances in nanoencapsulated and nano-enhanced phase-change materials for thermal energy storage: a review,” Processes, vol. 11, no. 11, p. 3219, 2023, https://doi.org/10.3390/pr11113219.Suche in Google Scholar

[44] R. Bharathiraja, T. Ramkumar, L. Karthick, and M. Mohanraj, “Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM),” J. Energy Storage, vol. 86, 2024, Art. no. 111163, https://doi.org/10.1016/j.est.2024.111163.Suche in Google Scholar

[45] C. N. Deepak and A. K. Behura, “Development and preparation of novel nano-enhanced organic eutectic phase change materials for low-temperature solar thermal applications,” Energy Sources, Part A Recov. Util. Environ. Eff., vol. 46, no. 1, pp. 6537–6554, 2024, https://doi.org/10.1080/15567036.2024.2349697.Suche in Google Scholar

[46] S. K. Gupta and D. Kumar, “Performance enhancement of solar still couples with solar water heater by using different PCM’s and nanoparticle combinations,” Energy Storage, vol. 6, no. 6, 2024, Art. no. e70023, https://doi.org/10.1002/est2.70023.Suche in Google Scholar

[47] Q. Xu, et al.., “Bioinspired spectrally selective phase‐change composites for enhanced solar thermal energy storage,” Adv. Funct. Mater., vol. 35, no. 1, 2025, Art. no. 2412066, https://doi.org/10.1002/adfm.202412066.Suche in Google Scholar

[48] B. Murali, et al.., “Design and performance optimization of a solar still using nano-coated condensing glass,” Int. J. Interact. Des. Manuf. (IJIDeM), vol. 26, pp. 1–6, 2022, https://doi.org/10.1007/s12008-022-01168-6.Suche in Google Scholar

[49] M. A. García-Rincón and J. J. Flores-Prieto, “Nanofluid stability in flat-plate solar collectors: a review,” Sol. Energy Mater. Sol. Cells, vol. 271, 2024, Art. no. 112832, https://doi.org/10.1016/j.solmat.2024.112832.Suche in Google Scholar

[50] V. K. Thakur and M. K. Gaur, “Heat and mass transfer analysis of passive solar still with nanoparticles, operating at different water depth and various slope of glass cover,” Desalin. Water Treat., vol. 235, pp. 1–25, 2021, https://doi.org/10.5004/dwt.2021.27627.Suche in Google Scholar

[51] J. Pereira, A. Moita, and A. Moreira, “An overview of the molten salt nanofluid as thermal energy storage media,” Energies, vol. 16, no. 4, p. 1825, 2023, https://doi.org/10.3390/en16041825.Suche in Google Scholar

[52] H. T. Zhu, Y. S. Lin, and Y. S. Yin, “A novel one-step chemical method for preparation of copper nanofluid,” J. Colloid Interface Sci., vol. 277, no. 1, pp. 100–3, 2004, https://doi.org/10.1016/j.jcis.2004.04.026.Suche in Google Scholar PubMed

[53] U. Fayaz, et al.., “Advances of nanofluid in food processing: preparation, thermophysical properties, and applications,” Food Res. Int., vol. 170, 2023, Art. no. 112954, https://doi.org/10.1016/j.foodres.2023.112954.Suche in Google Scholar PubMed

[54] D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, and H. Li, “Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluid,” Curr. Appl. Phys., vol. 9, no. 1, pp. 131–9, 2009, https://doi.org/10.1016/j.cap.2007.12.008.Suche in Google Scholar

[55] M. Sahooli and S. Sabbaghi, “CuO nanofluid: the synthesis and investigation of stability and thermal conductivity,” J. Nanofluid, vol. 1, no. 2, pp. 155–60, 2012, https://doi.org/10.1166/jon.2012.1014.Suche in Google Scholar

[56] W. Yu and H. Xie, “A review on nanofluid: preparation, stability mechanisms, and applications,” J. Nanomater., vol. 2012, no. 1, 2012, Art. no. 435873, https://doi.org/10.1155/2012/435873.Suche in Google Scholar

[57] E. Ponticorvo, et al.., “Fouling behavior and dispersion stability of nanoparticle-based refrigeration fluid,” Energies, vol. 15, no. 9, p. 3059, 2022, https://doi.org/10.3390/en15093059.Suche in Google Scholar

[58] A. A. Hussien, M. Z. Abdullah, N. M. Yusop, W. Al-Kouz, E. Mahmoudi, and M. Mehrali, “Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofluid in microtubes,” Entropy, vol. 21, no. 5, p. 480, 2019, https://doi.org/10.3390/e21050480.Suche in Google Scholar PubMed PubMed Central

[59] A. K. Singh and V. S. Raykar, “Microwave synthesis of silver nanofluid with polyvinylpyrrolidone (PVP) and their transport properties,” Colloid Polym. Sci., vol. 286, pp. 1667–73, 2008, https://doi.org/10.1007/s00396-008-1932-9.Suche in Google Scholar

[60] L. Fedele, L. Colla, S. Bobbo, S. Barison, and F. Agresti, “Experimental stability analysis of different water-based nanofluid,” Nanoscale Res. Let., vol. 6, pp. 1–8, 2011.10.1186/1556-276X-6-300Suche in Google Scholar PubMed PubMed Central

[61] H. Eltoum, Y. L. Yang, and J. R. Hou, “The effect of nanoparticles on reservoir wettability alteration: a critical review,” Petrol. Sci., vol. 18, pp. 136–53, 2021, https://doi.org/10.1007/s12182-020-00496-0.Suche in Google Scholar

[62] S. S. Murshed, M. Sharifpur, S. Giwa, and J. P. Meyer, “Experimental research and development on the natural convection of suspensions of nanoparticles—a comprehensive review,” Nanomaterials, vol. 10, no. 9, p. 1855, 2020, https://doi.org/10.3390/nano10091855.Suche in Google Scholar PubMed PubMed Central

[63] M. Arulprakasajothi, K. Elangovan, U. Chandrasekhar, and S. Suresh, “Performance study of conical strip inserts in tube heat exchanger using water based titanium oxide nanofluid,” Therm. Sci., vol. 22, no. 1 Part B, pp. 477–85, 2018, https://doi.org/10.2298/tsci151024250a.Suche in Google Scholar

[64] A. Mahajan and E. V. Ramana, “Patents on magnetoelectric multiferroics and their processing by electrophoretic deposition,” Recent Pat. Mater. Sci. vol. 7, no. 2, pp. 109–30, 2014, https://doi.org/10.2174/1874464807666140701190424.Suche in Google Scholar

[65] T. Arunkumar, J. Wang, and D. Denkenberger, “Capillary flow-driven efficient nanomaterials for seawater desalination: review of classifications, challenges, and future perspectives,” Renew. Sustain. Energy Rev., vol. 138, 2021, Art. no. 110547, https://doi.org/10.1016/j.rser.2020.110547.Suche in Google Scholar

[66] P. Wang, “Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight,” Environ. Sci.: Nano, vol. 5, no. 5, pp. 1078–89, 2018, https://doi.org/10.1039/c8en00156a.Suche in Google Scholar

[67] C. A. Gueymard, “The sun’s total and spectral irradiance for solar energy applications and solar radiation models,” Sol. Energy, vol. 76, no. 4, pp. 423–53, 2004, https://doi.org/10.1016/j.solener.2003.08.039.Suche in Google Scholar

[68] H. Yasmin, S. O. Giwa, S. Noor, and M. Sharifpur, “Thermal conductivity enhancement of metal oxide nanofluid: a critical review,” Nanomaterials, vol. 13, no. 3, p. 597, 2023, https://doi.org/10.3390/nano13030597.Suche in Google Scholar PubMed PubMed Central

[69] A. Moghtadaei, “Numerical simulation of heat transfer in a solar flat plate collector using nano-fluids,” Res. Bioeng. Biomed. Sci., pp. 1–6, 2025.10.21203/rs.3.rs-4008257/v1Suche in Google Scholar

[70] T. Patil, R. Gambhir, A. Vibhute, and A. P. Tiwari, “Gold nanoparticles: synthesis methods, functionalization and biological applications,” J. Cluster Sci., vol. 34, no. 2, pp. 705–25, 2023, https://doi.org/10.1007/s10876-022-02287-6.Suche in Google Scholar

[71] M. Arif, “A review on copper nanoparticles loaded in smart microgels,” Mater. Today Commun., vol. 30, 2023, Art. no. 106580, https://doi.org/10.1016/j.mtcomm.2023.106580.Suche in Google Scholar

[72] G. Pasparakis, “Recent developments in the use of gold and silver nanoparticles in biomedicine,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., vol. 14, no. 5, 2022, Art. no. e1817, https://doi.org/10.1002/wnan.1817.Suche in Google Scholar PubMed PubMed Central

[73] M. G. Berhe and Y. T. Gebreslassie, “Biomedical applications of biosynthesized nickel oxide nanoparticles,” Int. J. Nanomed., vol. 31, pp. 4229–51, 2023, https://doi.org/10.2147/ijn.s410668.Suche in Google Scholar

[74] T. V. Tran, D. T. Nguyen, P. S. Kumar, A. T. Din, A. A. Jalil, and D. V. Vo, “Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review,” Environ. Chem. Lett., vol. 1, pp. 1–23, 2022, https://doi.org/10.1007/s10311-021-01367-9.Suche in Google Scholar PubMed PubMed Central

[75] F. A. Essa, et al.., “Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation,” J. Energy Storage, vol. 32, 2020, Art. no. 102008, https://doi.org/10.1016/j.est.2020.102008.Suche in Google Scholar

[76] H. Panchal and K. K. Sadasivuni, “Experimental investigation on solar still with nanomaterial and dripping arrangement,” Energy Sources, Part A: Recovovery, Util. Environ. Eff., vol. 19, p. 1, 2020, https://doi.org/10.1080/15567036.2020.1834647.Suche in Google Scholar

[77] A. Behura and H. K. Gupta, “Use of nanoparticle-embedded phase change material in solar still for productivity enhancement,” Mater. Today: Proc., vol. 45, pp. 3904–7, 2021, https://doi.org/10.1016/j.matpr.2020.06.285.Suche in Google Scholar

[78] H. R. Goshayeshi, M. Goodarzi, and M. Dahari, “Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe,” Exp. Therm. Fluid Sci., vol. 68, pp. 663–8, 2015, https://doi.org/10.1016/j.expthermflusci.2015.07.014.Suche in Google Scholar

[79] H. Panchal, et al.., “Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber,” Case Stud. Therm. Eng., vol. 25, 2021, Art. no. 100905, https://doi.org/10.1016/j.csite.2021.100905.Suche in Google Scholar

[80] R. Parikh, U. Patdiwala, S. Parikh, H. Panchal, and K. K. Sadasivuni, “Performance enhancement using TiO2 nano particles in solar still at variable water depth,” Int J. Amb. Energy, vol. 43, no. 1, pp. 4037–44, 2022, https://doi.org/10.1080/01430750.2021.1873853.Suche in Google Scholar

[81] M. A. Ali, M. S. Irfan, T. Khan, M. Y. Khalid, and R. Umer, “Graphene nanoparticles as data generating digital materials in industry 4.0,” Sci. Rep., vol. 13, no. 1, p. 4945, 2023, https://doi.org/10.1038/s41598-023-31672-y.Suche in Google Scholar PubMed PubMed Central

[82] J. A. Buledi, A. Hyder, A. R. Solangi, R. Darabi, and H. Karimi-Maleh, “Nano-diamonds: transformative nanoscale material in advancing biosensor technology,” Inorg. Chem. Commun., vol. 19, 2023, Art. no. 111934, https://doi.org/10.1016/j.inoche.2023.111934.Suche in Google Scholar

[83] G. A. Tafete, G. Thothadri, and M. K. Abera, “A review on carbon nanotube-based composites for electrocatalyst applications,” Fullerenes, Nanotub. Carbon Nanostruct., vol. 30, no. 11, pp. 1075–83, 2022, https://doi.org/10.1080/1536383x.2022.2028278.Suche in Google Scholar

[84] R. Gómez-Villarejo, P. Estellé, and J. Navas, “Boron nitride nanotubes-based nanofluid with enhanced thermal properties for use as heat transfer fluids in solar thermal applications,” Sol. Energy Mater. Sol. Cells, vol. 205, 2020, Art. no. 110266, https://doi.org/10.1016/j.solmat.2019.110266.Suche in Google Scholar

[85] X. Gong, L. Guo, and R. Zhou, “Exploring the potential use of aluminium nitride nanoparticles in the delivery of flutamide anticancer drug,” Inorg. Chem. Commun., vol. 158, 2023, Art. no. 111478, https://doi.org/10.1016/j.inoche.2023.111478.Suche in Google Scholar

[86] M. Malika and S. S. Sonawane, “MSG extraction using silicon carbide-based emulsion nanofluid membrane: desirability and RSM optimisation,” Colloids Surf. Physicochem. Eng. Aspects, vol. 651, 2022, Art. no. 129594, https://doi.org/10.1016/j.colsurfa.2022.129594.Suche in Google Scholar

[87] S. M. Parsa, A. Rahbar, M. H. Koleini, S. Aberoumand, M. Afrand, and M. Amidpour, “A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination,” Desalination, vol. 480, 2020, Art. no. 114354, https://doi.org/10.1016/j.desal.2020.114354.Suche in Google Scholar

[88] O. Mahian, A. Kianifar, S. Z. Heris, D. Wen, A. Z. Sahin, and S. Wongwises, “Nanofluid effects on the evaporation rate in a solar still equipped with a heat exchanger,” Nano Energy, vol. 36, pp. 134–55, 2017, https://doi.org/10.1016/j.nanoen.2017.04.025.Suche in Google Scholar

[89] A. E. Kabeel, Z. M. Omara, and F. A. Essa, “Enhancement of modified solar still integrated with external condenser using nanofluid: an experimental approach,” Energy Convers. Manag., vol. 78, pp. 493–8, 2014, https://doi.org/10.1016/j.enconman.2013.11.013.Suche in Google Scholar

[90] S. Nazari, H. Safarzadeh, and M. Bahiraei, “Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid,” Renew. Energy, vol. 135, pp. 729–44, 2019, https://doi.org/10.1016/j.renene.2018.12.059.Suche in Google Scholar

[91] Z. M. Omara, A. E. Kabeel, and F. A. Essa, “Effect of using nanofluid and providing vacuum on the yield of corrugated wick solar still,” Energy Convers. Manag., vol. 103, pp. 965–72, 2015, https://doi.org/10.1016/j.enconman.2015.07.035.Suche in Google Scholar

[92] L. Sahota and G. N. Tiwari, “Analytical characteristic equation of nanofluid loaded active double slope solar still coupled with helically coiled heat exchanger,” Energy Convers. Manage., vol. 135, pp. 308–26, 2017, https://doi.org/10.1016/j.enconman.2016.12.078.Suche in Google Scholar

[93] S. W. Sharshir, G. Peng, L. Wu, F. A. Essa, A. E. Kabeel, and N. Yang, “The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance,” Appl. Energy, vol. 191, pp. 358–66, 2017, https://doi.org/10.1016/j.apenergy.2017.01.067.Suche in Google Scholar

[94] A. E. Kabeel, Z. M. Omara, and F. A. Essa, “Improving the performance of solar still by using nanofluid and providing vacuum,” Energy Convers. Manag., vol. 86, pp. 268–74, 2014, https://doi.org/10.1016/j.enconman.2014.05.050.Suche in Google Scholar

[95] S. W. Sharshir, A. W. Kandeal, M. Ismail, G. B. Abdelaziz, A. E. Kabeel, and N. Yang, “Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach,” Appl. Therm. Eng., vol. 160, 2019, Art. no. 113997, https://doi.org/10.1016/j.applthermaleng.2019.113997.Suche in Google Scholar

[96] H. A. Mohamed, N. M. Elgndy, and A. R. AlTohamy, “Enhancing the performance of conventional solar still using Nano-doped paint (NDP) coating,” Exp. Study.Suche in Google Scholar

[97] A. Yahyaee, P. Vatankhah, and H. Sørensen, “Effects of nanoparticle size on surface dynamics and thermal performance in film boiling of Al2O3 water-based nanofluid,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 696, 2024, Art. no. 134267, https://doi.org/10.1016/j.colsurfa.2024.134267.Suche in Google Scholar

[98] S. Rasachak, et al.., “Effect of tin oxide/black paint coating on absorber plate temperature for improved solar still production: a controlled indoor and outdoor investigation,” Int. J. Photoenergy, vol. 2022, no. 1, 2022, Art. no. 6902783, https://doi.org/10.1155/2022/6902783.Suche in Google Scholar

[99] A. E. Kabeel, et al.., “Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint,” J. Clean. Prod., vol. 213, pp. 185–91, 2019, https://doi.org/10.1016/j.jclepro.2018.12.185.Suche in Google Scholar

[100] P. Zanganeh, A. S. Goharrizi, S. Ayatollahi, M. Feilizadeh, and H. Dashti, “Efficiency improvement of solar stills through wettability alteration of the condensation surface: an experimental study,” Appl. Energy, vol. 268, 2020, Art. no. 114923, https://doi.org/10.1016/j.apenergy.2020.114923.Suche in Google Scholar

[101] S. Arora, et al.., “Performance and cost analysis of photovoltaic thermal (PVT)-compound parabolic concentrator (CPC) collector integrated solar still using CNT-water based nanofluid,” Desalination, vol. 495, 2020, Art. no. 114595, https://doi.org/10.1016/j.desal.2020.114595.Suche in Google Scholar

[102] A. E. Kabeel, Z. M. Omara, and F. A. Essa, “Numerical investigation of modified solar still using nanofluid and external condenser,” J. Taiwan Inst. Chem. Eng., vol. 75, pp. 77–86, 2017, https://doi.org/10.1016/j.jtice.2017.01.017.Suche in Google Scholar

[103] A. F. Abed, M. J. Alshukri, and D. M. Hachim, “Improving solar still performance via the integration of nanoparticle-enhanced phase change materials: a novel pyramid-shaped design with a numerical simulation approach,” J. Energy Storage, vol. 97, 2024, Art. no. 112980, https://doi.org/10.1016/j.est.2024.112980.Suche in Google Scholar

[104] W. Chen, J. Zhou, F. Zhang, X. Li, and J. Guo, “Stability study of low-cost carbon quantum dots nanofluid with saline water and their application investigation for the performance improvement of solar still,” Diamond Relat. Mater., vol. 138, 2023, Art. no. 110194, https://doi.org/10.1016/j.diamond.2023.110194.Suche in Google Scholar

[105] C. Phukapak, S. Phukapak, and N. Pawaree, “Experimental investigation of the effects of different nanoparticles on the performance of single basin double-slope solar stills,” Clean Energy, vol. 8, no. 6, pp. 96–119, 2024, https://doi.org/10.1093/ce/zkae077.Suche in Google Scholar

Received: 2025-04-19
Accepted: 2025-06-01
Published Online: 2025-06-30

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2025-0077/pdf?lang=de
Button zum nach oben scrollen