Startseite Advances in extraction and sustainable utilization of cashew nut shell liquid (CNSL) for industrial applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Advances in extraction and sustainable utilization of cashew nut shell liquid (CNSL) for industrial applications

  • Malaiyarasan Vichitra , Muniraj Sunil Kumar , Nagappan Beemkumar EMAIL logo , Ganesan Subbiah und Kumar Kamakshi Priya EMAIL logo
Veröffentlicht/Copyright: 17. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cashew nutshell liquid (CNSL), a highly versatile byproduct of the cashew processing industry, offers remarkable potential across a broad spectrum of industrial and chemical applications. Extracted from the soft, spongy honeycomb structure inside the hard outer shell of the cashew nut, this dark reddish-brown, viscous liquid is a rich, renewable source of unsaturated phenolic compounds. Among bio-based raw materials, CNSL stands out for its cost-effectiveness, high chemical reactivity, and wide applicability in the production of polymers, coatings, resins, and biofuels. This review presents a comprehensive analysis of various extraction techniques used to isolate CNSL, with a particular focus on chemical extraction methods. Three primary extraction approaches – thermal, mechanical, and chemical – are discussed, each uniquely influencing the yield and composition of the extracted CNSL. Special attention is given to chemical extraction methods such as solvent extraction, Soxhlet extraction, and supercritical carbon dioxide (SC–CO2) extraction, evaluating their efficiency, selectivity, and scalability. He extracted CNSL typically contains four major constituents: anacardic acid, cardanol, cardol, and 2-methyl cardol, with their relative proportions depending heavily on the extraction technique and operational conditions. Beyond traditional methods, this review also highlights recent advancements in green chemical processes aimed at reducing environmental impacts while enhancing material performance. These innovations pave the way for sustainable production of industrial chemicals and biomaterials from cashew waste, supporting global initiatives toward a circular economy and the principles of green chemistry.


Corresponding authors: Nagappan Beemkumar, Department of Mechanical Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore, 562112, India, E-mail: ; and Kumar Kamakshi Priya, Department of Physics, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamil Nadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

Nomenclature

CNSL

cashew nut shell liquid

CNS

cashew nut shell

CO2

carbon dioxide

FTIR

fourier transform infrared

GC-MS

gas chromatography-mass-spectroscopy

H1 NMR

proton nuclear magnetic resonance

HPLC

high performance liquid chromatography

MAE

microwave-assisted extraction

SC–CO2

solvent carbon dioxide

UAE

ultrasound-assisted-extraction

UV–Vis

ultraviolet-visible spectroscopy

SP

single pressurization

DP

depressurization

References

[1] O. E. Agwu and J. U. Akpabio, “SC,” J. Pet. Sci. Eng., 2018, https://doi.org/10.1016/j.petrol.2018.01.009.Suche in Google Scholar

[2] J. Fang, et al.., “An integrated ZnO–SnO2 n–n heterostructure strategy of catalysts and ash for promoting diesel soot combustion,” J. Therm. Anal. Calorim., 2025. https://doi.org/10.1007/s10973-025-14184-x.Suche in Google Scholar

[3] Y. Xu, et al.., “Cooperative production of monophenolic chemicals and carbon adsorption materials from cascade pyrolysis of acid hydrolysis lignin,” Bioresour. Technol., vol. 399, 2024, Art. no. 130557. https://doi.org/10.1016/j.biortech.2024.130557.Suche in Google Scholar PubMed

[4] L. Fu, J. Wang, X. Fu, and G. Zhao, “Finite-time Pade-based adaptive FNN controller implementation for microbial fuel cell with delay and multi-disturbance,” Int. J. Hydrog. Energy, vol. 98, pp. 1034–1043, 2025, https://doi.org/10.1016/j.ijhydene.2024.10.372.Suche in Google Scholar

[5] M. C. Lubi and E. T. Thachil, “Cashew nut shell liquid (CNSL) – A versatile monomer for polymer synthesis,” Des. Monomers Polym., vol. 3, no. 2, pp. 123–153, 2000, https://doi.org/10.1163/156855500300142834.Suche in Google Scholar

[6] S. E. Owumi, J. O. Fatoki, M. A. Gbadegesin, and O. A. Odunola, “Clastogenic and toxicological assessment of cashew (Anacardium occidentale) nut bark extracts in Wistar rats,” Acta Biochim. Pol., vol. 62, no. 3, 2015. https://doi.org/10.18388/abp.2015_1024.Suche in Google Scholar PubMed

[7] J. Dong, et al.., “Effect of CaO addition on fast pyrolysis behavior of solid waste components using Py GC/MS,” J. Anal. Appl. Pyrolysis, vol. 188, no. 1, p. 107055, 2025. https://doi.org/10.1016/j.jaap.2025.107055.Suche in Google Scholar

[8] Y. Shabtay, “Cashew nut shell liquid (CNSL),” Paintindia, pp. 1–17, 2002.Suche in Google Scholar

[9] A. Of, N. Cashew, B. Y, “High-performance, and L. Chromatography,” Chromatography, vol. 303, pp. 137–150, 1984.10.1016/S0021-9673(01)96053-4Suche in Google Scholar

[10] S. Rambhade, A. Chakraborty, U. Patil, and A. Rambhade, “Journal of chemical and pharmaceutical research preparations,” J. Chem. Pharm. Res., vol. 2, no. 6, pp. 7–25, 2010.Suche in Google Scholar

[11] C. S. Damian, Y. Devarajan, R. Jayabal, and T. Raja, “Enhancing marine diesel engine compatibility with sustainable fuels: Key factors and adjustments,” Mar. Pollut. Bull., vol. 215, p. 117836, 2025. https://doi.org/10.1016/j.marpolbul.2025.117836.Suche in Google Scholar PubMed

[12] C. Selvam and Y. Devarajan, “Performance and emission analysis of sterculia foetida biodiesel enhanced with butanol: Combustion efficiency and emission mitigation,” Results Eng., vol. 25, p. 104586, 2025. https://doi.org/10.1016/j.rineng.2025.104586.Suche in Google Scholar

[13] G. Soundararajan, et al.., “Synergistic effects of graphene quantum dot additives in waste plastic oil blends: Combustion stability and emission reductions analysis,” Results Eng., vol. 25, p. 104130, 2025. https://doi.org/10.1016/j.rineng.2025.104130.Suche in Google Scholar

[14] M. O. Edoga, L. Fadipe, and R. N. Edoga, “Extraction of polyphenols from cashew nut shell,” Leonardo Electron. J. Pract. Technol., vol. 9, no. 9, pp. 107–112, 2006.Suche in Google Scholar

[15] R. N. Patel, S. Bandyopadhyay, and A. Ganesh, “Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide,” Bioresour. Technol., vol. 97, no. 6, pp. 847–853, 2006. https://doi.org/10.1016/j.biortech.2005.04.009.Suche in Google Scholar PubMed

[16] P. H. Gedam and P. S. Sampathkumaran, “Cashew nut shell liquid: Extraction, chemistry and applications,” Prog. Org. Coating., vol. 14, no. 2, pp. 115–157, 1986, https://doi.org/10.1016/0033-0655(86)80009-7.Suche in Google Scholar

[17] S. K. Nayak and Y. Devarajan, “Evaluating ignition improvers on performance and emissions of Calophyllum inophyllum biodiesel in turbocharged diesel engines,” Results Eng., vol. 24, p. 103664, 2024, https://doi.org/10.1016/j.rineng.2024.103664.Suche in Google Scholar

[18] A. A. Qadir Athar, et al.., “Solvent extraction and GC-MS analysis of sesame seeds for determination of bioactive antioxidant fatty acid/fatty oil components,” Drug Res., vol. 68, no. 06, pp. 344–348, 2018, https://doi.org/10.1055/s-0043-123466.Suche in Google Scholar PubMed

[19] S. K. Kyei, O. Akaranta, G. Darko, and U. J. Chukwu, “Extraction, characterization and application of cashew nut shell liquid from cashew nut shells,” Chem. Sci. Int. J., no. December, pp. 1–10, 2019, https://doi.org/10.9734/csji/2019/v28i330143.Suche in Google Scholar

[20] F. H. A. Rodrigues, F. C. F. França, J. R. R. Souza, N. M. P. S. Ricardo, and J. P. A. Feitosa, “Comparison between physico-chemical properties of the technical cashew nut shell liquid (CNSL) and those natural extracted from solvent and pressing,” Polimeros, vol. 21, no. 2, pp. 156–160, 2011, https://doi.org/10.1590/S0104-14282011005000028.Suche in Google Scholar

[21] N. Chandrasekara and F. Shahidi, “Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa,” J. Agric. Food Chem., vol. 59, no. 9, pp. 5006–5014, 2011, https://doi.org/10.1021/jf2000772.Suche in Google Scholar PubMed

[22] U. H. Hebbar and M. N. Ramesh, “Optimisation of processing conditions for infrared drying of cashew kernels with testa,” J. Sci. Food Agric., vol. 85, no. 5, pp. 865–871, 2005, https://doi.org/10.1002/jsfa.2045.Suche in Google Scholar

[23] M. A. De Sousa Rios, T. L. Nascimento, S. N. Santiago, and S. E. Mazzetto, “Cashew nut shell liquid: A versatile raw material utilized for syntheses of phosphorus compounds,” Energy Fuels, vol. 23, no. 11, pp. 5432–5437, 2009, https://doi.org/10.1021/ef900585b.Suche in Google Scholar

[24] J. Mgaya, G. B. Shombe, S. C. Masikane, S. Mlowe, E. B. Mubofu, and N. Revaprasadu, “Cashew nut shell: A potential bio-resource for the production of bio-sourced chemicals, materials and fuels,” Green Chem., vol. 21, no. 6, pp. 1186–1201, 2019, https://doi.org/10.1039/c8gc02972e.Suche in Google Scholar

[25] A. G. Mohod, Y. P. Khandetod, and S. Sengar, “Eco-friendly utilization of parabolic concentrating solar cooker for extraction of cashew nut shell oil and household cooking,” Int. J. Sustain. Energy, vol. 29, no. 3, pp. 125–132, 2010, https://doi.org/10.1080/14786460903497383.Suche in Google Scholar

[26] E. B. Mubofu and J. E. Mgaya, “Chemical valorization of cashew nut shell waste,” Top. Curr. Chem., vol. 376, no. 2, pp. 1–15, 2018, https://doi.org/10.1007/s41061-017-0177-9.Suche in Google Scholar PubMed

[27] S. Kumar, P. Dinesha, and M. A. Rosen, “Cashew nut shell liquid as a fuel for compression ignition engines: A comprehensive review,” Energy and Fuels, vol. 32, no. 7, pp. 7237–7244, 2018, https://doi.org/10.1021/acs.energyfuels.8b00579.Suche in Google Scholar

[28] T. Godjo, “Development of an oil extraction machine for cashew nut shell,” Int. J. Eng. Tech., vol. 2, no. 6, pp. 6–9, 2016.Suche in Google Scholar

[29] L. A. Sarubbo, et al.., “New aqueous two-phase system based on cashew-nut tree gum and poly(ethylene glycol),” J. Chromatogr. B Biomed. Sci. Appl., vol. 743, nos. 1–2, pp. 79–84, 2000, https://doi.org/10.1016/S0378-4347(99)00516-2.Suche in Google Scholar PubMed

[30] S. Sivakumar, R. Venkatachalam, N. Nedunchezhian, P. Sivakumar, and P. Rajendran, “Processing of cashew nut shell and feasibility of its oil as bio fuel in compression ignition engine,” J. Chem. Pharm. Sci., vols. 2014-Decem, no. 4, pp. 133–135, 2014.Suche in Google Scholar

[31] R. Paramashivappa, P. Phani Kumar, P. J. Vithayathil, and A. Srinivasa Rao, “Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) nut shell liquid,” J. Agric. Food Chem., vol. 49, no. 5, pp. 2548–2551, 2001, https://doi.org/10.1021/jf001222j.Suche in Google Scholar PubMed

[32] M. Yuliana, N. Y. Tran-thi, and Y. Ju, “Effect of extraction methods on characteristic and composition of Indonesian cashew nut shell liquid,” Ind. Crop. Prod., vol. 35, no. 1, pp. 230–236, 2012, https://doi.org/10.1016/j.indcrop.2011.07.007.Suche in Google Scholar

[33] R. Bharali and S. Chatterjee, “Optimization of the solvent extraction rate and extraction efficiency considering flow rate heating rate, solvent concentration,” Int. J. Adv. Res. Sci. Eng., vol. 8354, no. 4, pp. 527–533, 2015.Suche in Google Scholar

[34] N. Emelike, M. . Akusu, and A. Ujong, “Antioxidant and physicochemical properties of oils extracted from cashew (Anacardium occidentale L.) Kernels,” Int. J. Food Sci. Nutr., vol. 2, no. 6, pp. 122–128, 2017.Suche in Google Scholar

[35] O. A. Attanasi, et al., “Solvent free synthesis of novel mono- and bis-benzoxazines from cashew nut shell liquid components,” Curr. Org. Chem., vol. 16, no. 21, pp. 2613–2621, 2012, https://doi.org/10.2174/138527212804004616.Suche in Google Scholar

[36] M. Yuliana, B. T. Nguyen-Thi, S. Faika, L. H. Huynh, F. E. Soetaredjo, and Y. H. Ju, “Separation and purification of cardol, cardanol and anacardic acid from cashew (Anacardium occidentale L.) nut-shell liquid using a simple two-step column chromatography,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 5, pp. 2187–2193, 2014, https://doi.org/10.1016/j.jtice.2014.07.012.Suche in Google Scholar

[37] P. Senthil Kumar, N. Arun Kumar, R. Sivakumar, and C. Kaushik, “Experimentation on solvent extraction of polyphenols from natural waste,” J. Mater. Sci., vol. 44, no. 21, pp. 5894–5899, 2009, https://doi.org/10.1007/s10853-009-3834-8.Suche in Google Scholar

[38] A. Capuzzo, M. E. Maffei, and A. Occhipinti, “Supercritical fluid extraction of plant flavors and fragrances,” Molecules, vol. 18, no. 6, pp. 7194–7238, 2013, https://doi.org/10.3390/molecules18067194.Suche in Google Scholar PubMed PubMed Central

[39] R. L. Smith, R. M. Malaluan, W. B. Setianto, H. Inomata, and K. Arai, “Separation of cashew (Anacardium occidentale L.) nut shell liquid with supercritical carbon dioxide,” Bioresour. Technol., vol. 88, no. 1, pp. 1–7, 2003, https://doi.org/10.1016/S0960-8524(02)00271-7.Suche in Google Scholar PubMed

[40] C. G. Pereira and M. A. A. Meireles, “Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives,” Food Bioproc. Technol., vol. 3, no. 3, pp. 340–372, 2010, https://doi.org/10.1007/s11947-009-0263-2.Suche in Google Scholar

[41] R. N. Patel, S. Bandyopadhyay, and A. Ganesh, “Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction,” Energy, vol. 36, no. 3, pp. 1535–1542, 2011, https://doi.org/10.1016/j.energy.2011.01.009.Suche in Google Scholar

[42] W. B. Setianto, R. L. Smith, H. Inomata, and K. Arai, “Processing of cashew nut (anacardium occidentale L.) and cashew nut shell liquid with supercritical carbon dioxide and water,” Proc. 6th Int. Symp. Supercrit. Dioxide Water, no. 1, pp. 41–46, 2003.Suche in Google Scholar

[43] J. Y. N. Philip, J. D. C. Francisco, E. S. Dey, J. Buchweishaija, L. L. Mkayula, and L. Ye, “Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide,” J. Agric. Food Chem., vol. 56, no. 20, pp. 9350–9354, 2008, https://doi.org/10.1021/jf801532a.Suche in Google Scholar PubMed

[44] H. Sovov and R. P. Stateva, “Supercritical fluid extraction from vegetable materials supercritical fluid extraction from vegetable materials,” no. 778168, 2017, https://doi.org/10.1515/REVCE.2011.002.Suche in Google Scholar

[45] O. Wrona, K. Rafińska, C. Możeński, and B. Buszewski, “Supercritical fluid extraction of bioactive compounds from plant materials,” J. AOAC Int., vol. 100, no. 6, pp. 1624–1635, 2017, https://doi.org/10.5740/jaoacint.17-0232.Suche in Google Scholar PubMed

[46] M. C. Díaz-Maroto, M. S. Pérez-Coello, and M. D. Cabezudo, “Supercritical carbon dioxide extraction of volatiles from spices: Comparison with simultaneous distillation-extraction,” J. Chromatogr. A, vol. 947, no. 1, pp. 23–29, 2002, https://doi.org/10.1016/S0021-9673(01)01585-0.Suche in Google Scholar PubMed

[47] E. Reverchon and I. De Marco, “Supercritical fluid extraction and fractionation of natural matter,” J. Supercrit. Fluids, vol. 38, no. 2, pp. 146–166, 2006, https://doi.org/10.1016/j.supflu.2006.03.020.Suche in Google Scholar

[48] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R. L. Reis, and A. R. C. Duarte, “Natural deep eutectic solvents – solvents for the 21st century,” ACS Sustain. Chem. Eng., vol. 2, no. 5, pp. 1063–1071, 2014, https://doi.org/10.1021/sc500096j.Suche in Google Scholar

[49] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: Syntheses, properties and applications,” Chem. Soc. Rev., vol. 41, no. 21, pp. 7108–7146, 2012, https://doi.org/10.1039/C2CS35178A.Suche in Google Scholar

Received: 2025-04-26
Accepted: 2025-06-01
Published Online: 2025-06-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2025-0085/html
Button zum nach oben scrollen