Startseite Phosphate, TDS and BOD removal from industrial wastewater using combined sono-pulsed-electrochemical oxidation: optimization by response surface methodology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phosphate, TDS and BOD removal from industrial wastewater using combined sono-pulsed-electrochemical oxidation: optimization by response surface methodology

  • Hawi Etana Debela , Ghadah M. Al-Senani , Firomsa Bidira , Salhah D. Al-Qahtani , Sivakumar Vigneshwaran und Perumal Asaithambi EMAIL logo
Veröffentlicht/Copyright: 11. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Industrial sectors use high volumes of water and produce huge quantities of wastewater that are full of many types of pollutants, such as phosphates, total dissolved solids (TDS), and those that involve biological oxygen demand (BOD). In this study, the integrated sonolysis and pulsed electrochemical oxidation (S-PEO) process for treating industrial wastewater was examined, with a focus on maximizing pollutant removal and reducing energy usage. Optimal conditions for maximal treatment efficiency were determined by methodically varying key operational parameters, including initial pH, electrolysis time, and current. The results showed that, when the S-PEO process was run at optimal circumstances (pH of 7, electrolysis period of 40 min, and current of 0.5 Amp), it was produced remarkable removal efficiencies. With a low power consumption of 0.19 kWh/m3, the removal efficiencies for phosphates, TDS, and BOD were about 98.70 %, 97.44 %, and 95.49 %, respectively. To assess and optimize the process parameters, a methodical approach utilizing response surface methodology (RSM) and central composite design (CCD) was utilized. At a 95 % confidence level, statistical validation using analysis of variance (ANOVA) showed that the independent variables and their interactions had a meaningful impact. Additionally, the study used a quadratic regression model to estimate power consumption and pollutant removal efficiencies with accuracy. The model’s dependability is confirmed by the high value 0.91 of the correlation coefficient. These results emphasize the S-PEO process’s potential as an efficient and environmentally friendly method of treating industrial wastewater.


Corresponding author: Perumal Asaithambi, Faculty of Civil and Environmental Engineering, 107839 Jimma Institute of Technology, Jimma University , Po Box – 378, Jimma, Ethiopia, E-mail:

Funding source: Ghadah M. Al-Senani

Award Identifier / Grant number: PNURSP2025R67

Acknowledgments

This work is supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number: (PNURSP2025R67), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Hawi Etana Debela: Investigation; Data curation; Resources; Writing – original draft Ghadah M. Al-Senani: Conceptualization; Methodology; Validation; Supervision. Firomsa Bidira: Investigation; Data curation; Resources; Writing – original draft. Salhah D. Al-Qahtani: Conceptualization; Methodology; Validation; Supervision. Sivakumar Vigneshwaran: Conceptualization; Methodology; Validation; Supervision. Perumal Asaithambi: Conceptualization; Methodology; Validation; Supervision.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: Author states no conflict of interest.

  6. Research funding: This work is funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number: (PNURSP2025R67), Prin cess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  7. Data availability: The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

[1] S. Sharma, A. Aygun, and H. Simsek, “Electrochemical treatment of sunflower oil refinery wastewater and optimization of the parameters using response surface methodology,” Chemosphere, vol. 249, p. 126511, 2020, https://doi.org/10.1016/j.chemosphere.2020.126511.Suche in Google Scholar PubMed

[2] S. Sharma and H. Simsek, “Sugar beet industry process wastewater treatment using electrochemical methods and optimization of parameters using response surface methodology,” Chemosphere, vol. 238, p. 124669, 2020, https://doi.org/10.1016/j.chemosphere.2019.124669.Suche in Google Scholar PubMed

[3] H. Zöllig, A. Remmele, E. Morgenroth, and K. M. Udert, “Removal rates and energy demand of the electrochemical oxidation of ammonia and organic substances in real stored urine,” Environ. Sci. Water Res. Technol., vol. 3, no. 3, pp. 480–491, 2017, https://doi.org/10.1039/c7ew00014f.Suche in Google Scholar PubMed PubMed Central

[4] H. E. Debela, F. Bidira, Z. A. Samuel, D. Geleta, and P. Asaithambi, “Industrial park wastewater treatment using a combined sono-pulsed electrochemical-coagulation process,” Sci. African, vol. 26, no. September, p. e02385, 2024, https://doi.org/10.1016/j.sciaf.2024.e02385.Suche in Google Scholar

[5] E. H. Radwan, M. A. K. Saber, M. E. K. Saber, and G. H. Fahmy, “The impact of some organic and inorganic pollutants on fresh water (Rashid, river nile), Egypt,” J. Adv. Biol., vol. 10, no. 2, pp. 2133–2145, 2017, https://doi.org/10.24297/jab.v10i2.6481.Suche in Google Scholar

[6] E. Günes, D. I. Çifçi, A. R. Dinçer, and Y. Günes, “Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes,” Turkish J. Chem., vol. 45, no. 3, pp. 551–565, 2021, https://doi.org/10.3906/kim-2010-48.Suche in Google Scholar PubMed PubMed Central

[7] S. Hanchang, “Industrial wastewater- types, amounts and effects,” Point Sources Pollut. Local Eff. their Control, vol. I, pp. 191–203, 2019.Suche in Google Scholar

[8] M. H. Islam, M. M. Rahman, and F. U. Ashraf, “Assessment of water quality and impact of effluents from fertilizer factories to the Lakhya River,” Int. J. Water Resour. Environ. Eng., vol. 2, no. 8, pp. 208–221, 2010.Suche in Google Scholar

[9] P. Sarda and P. Sadgir, “Assessment of multi parameters of water quality in surface water bodies-A review.ISSN: 2321-9653,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 3, pp. 331–336, 2015.Suche in Google Scholar

[10] J. Tejera, D. Hermosilla, A. Gascó, C. Negro, and Á. Blanco, “Combining coagulation and electrocoagulation with uva-led photo-fenton to improve the efficiency and reduce the cost of mature landfill leachate treatment,” Molecules, vol. 26, no. 21, 2021, https://doi.org/10.3390/molecules26216425.Suche in Google Scholar PubMed PubMed Central

[11] S. Uludag-Demirer, et al., “Techno-economic analysis of electrocoagulation on water reclamation and bacterial/viral indicator reductions of a high-strength organic wastewater-anaerobic digestion effluent,” Sustain, vol. 12, no. 7, 2020, https://doi.org/10.3390/su12072697.Suche in Google Scholar

[12] G. M. Alwan and G. M. Alwan, “PH control problems of a wastewater treatment plant Al-khwarizmi engineering journal pH-control problems of wastewater treatment plants,” Eng. J., vol. 4, no. 2, p. 45, 2008.Suche in Google Scholar

[13] P. A. Bedekar, B. N. Bhalkar, S. M. Patil, and S. P. Govindwar, “Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum,” Environ. Sci. Pollut. Res., vol. 23, no. 20, pp. 20963–20976, 2016, https://doi.org/10.1007/s11356-016-7279-8.Suche in Google Scholar PubMed

[14] R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. Von Gunten, and B. Wehrli, “Global water pollution and human health,” Annu. Rev. Environ. Resour., vol. 35, pp. 109–136, 2010, https://doi.org/10.1146/annurev-environ-100809-125342.Suche in Google Scholar

[15] I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, “Electrochemical advanced oxidation processes: today and tomorrow. A review,” Environ. Sci. Pollut. Res., vol. 21, no. 14, pp. 8336–8367, 2014, https://doi.org/10.1007/s11356-014-2783-1.Suche in Google Scholar PubMed

[16] H. Etana, F. Bidira, and P. Asaithambi, “Removal of BOD , TDS , and phosphate from industrial parks wastewater by using a combined sono-pulsed electrocoagulation method,” Sci. African, vol. 28, no. November 2024, p. e02741, 2025 https://doi.org/10.1016/j.sciaf.2025.e02741.Suche in Google Scholar

[17] P. Cañizares, R. Paz, C. Sáez, and M. A. Rodrigo, “Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes,” J. Environ. Manage., vol. 90, no. 1, pp. 410–420, 2009, https://doi.org/10.1016/j.jenvman.2007.10.010.Suche in Google Scholar PubMed

[18] S. Chakma and V. S. Moholkar, “Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts,” Ultrason. Sonochem., vol. 22, pp. 287–299, 2014, https://doi.org/10.1016/j.ultsonch.2014.06.008.Suche in Google Scholar PubMed

[19] A. V. Karim and A. Shriwastav, “Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: degradation kinetics and pathways,” Chem. Eng. J., vol. 392, no. December 2019, p. 124853, 2020, https://doi.org/10.1016/j.cej.2020.124853.Suche in Google Scholar

[20] B. Yang and J. Tang, “Electrochemical oxidation treatment of wastewater using activated carbon electrode,” vol. 13, pp. 1096–1104, 2018, https://doi.org/10.20964/2018.01.78.Suche in Google Scholar

[21] D. Naghipour, et al., “Statistical modeling and optimization of the phosphorus biosorption by modified Lemna minor from aqueous solution using response surface methodology (RSM),” Desalin. Water Treat., vol. 57, no. 41, pp. 19431–19442, 2016, https://doi.org/10.1080/19443994.2015.1100555.Suche in Google Scholar

[22] F. Bidiraa, E. A. Bekele, and W. S. Muleta, “Optimizing chromium removal from synthetic wastewater via electrocoagulation process with a natural coagulant (blended of eggshell powder and lime) using response surface methodology,” Heliyon, vol. 10, no. 21, p. e39234, 2024, https://doi.org/10.1016/j.heliyon.2024.e39234.Suche in Google Scholar PubMed PubMed Central

[23] M. Moradi, Y. Vasseghian, H. Arabzade, and A. Mousavi Khaneghah, “Various wastewaters treatment by sono-electrocoagulation process: a comprehensive review of operational parameters and future outlook,” Chemosphere, vol. 263, p. 128314, 2021, https://doi.org/10.1016/j.chemosphere.2020.128314.Suche in Google Scholar PubMed

[24] A. Yami, S. Kebede, and Y. Mamo, “Impact assessment of gilgel gibe hydroelectric dam on schitosomiasis: a cross sectional study in southwest Ethiopia,” Ethiop. J. Health Sci., vol. 20, no. 2, 2011, https://doi.org/10.4314/ejhs.v20i2.69439.Suche in Google Scholar PubMed PubMed Central

[25] F. Bidira, Z. Asmelash, S. Kebede, and A. Bekele, “Optimization and evaluation of the process variable’s effect on color and turbidity removal from coffee processing wastewater: using a photoelectrochemical oxidation process,” Environ. Heal. Eng. Manag., vol. 10, no. 1, pp. 1–15, 2023, https://doi.org/10.34172/EHEM.2023.01.Suche in Google Scholar

[26] M. S. Pillay, M. I. Selim, and D. Siru, “Drinking-water quality monitoring and surveillance,” Waterlines, vol. 13, no. 2, pp. 8–10, 1994, https://doi.org/10.3362/0262-8104.1994.037.Suche in Google Scholar

[27] D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes, and U. Hübner, “Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review,” Water Res., vol. 139, no. 2018, pp. 118–131, 2018, https://doi.org/10.1016/j.watres.2018.03.042.Suche in Google Scholar PubMed

[28] A. Hassani, M. Malhotra, A. V Karim, S. Krishnan, and P. V Nidheesh, “Recent progress on ultrasound-assisted electrochemical processes: a review on mechanism, reactor strategies, and applications for wastewater treatment,” Environ. Res., vol. 205, p. 112463, 2022. https://doi.org/10.1016/j.envres.2021.112463.Suche in Google Scholar PubMed

[29] C. P. Nanseu-Njiki, S. R. Tchamango, P. C. Ngom, A. Darchen, and E. Ngameni, “Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes,” J. Hazard. Mater., vol. 168, nos. 2–3, pp. 1430–1436, 2009, https://doi.org/10.1016/j.jhazmat.2009.03.042.Suche in Google Scholar PubMed

[30] R. Mehrkhah, S. Y. Park, J. H. Lee, S. Y. Kim, and B. H. Lee, “Prospective performance assessment of enhanced electrochemical oxidation technology: insights into fundamentals and influencing factors for reducing energy requirements in industrial wastewater treatment,” Environ. Technol. Innov., vol. 32, p. 103336, 2023, https://doi.org/10.1016/j.eti.2023.103336.Suche in Google Scholar

[31] V. Kuokkanen, “Utilization of electrocoagulation for water and wastewater treatment and nutrient recovery,” Academic dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public defense in Kuusamonsali (YB210), Linnanmaa, 2016.Suche in Google Scholar

[32] D. Tibebe, Y. Kassa, and A. N. Bhaskarwar, “Treatment and characterization of phosphorus from synthetic wastewater using aluminum plate electrodes in the electrocoagulation process,” BMC Chem, vol. 13, no. 1, pp. 1–14, 2019, https://doi.org/10.1186/s13065-019-0628-1.Suche in Google Scholar PubMed PubMed Central

[33] K. T. Asefaw, F. Bidira, W. M. Desta, and P. Asaithambi, “Investigation on pulsed-electrocoagulation process for the treatment of wet coffee processing wastewater using an aluminum electrode,” Sustain. Chem. Environ., vol. 6, no. March, p. 100085, 2024, https://doi.org/10.1016/j.scenv.2024.100085.Suche in Google Scholar

[34] F. B. Abdi, Z. A. Samuel, S. K. Debela, and T. A. Amibo, “Wastewater treatment using a photoelectrochemical oxidation process for the coffee processing industry optimization of chemical oxygen demand (COD) removal using response surface methodology,” Int. J. Anal. Chem., vol. 2022, 2022, https://doi.org/10.1155/2022/1734411.Suche in Google Scholar PubMed PubMed Central

[35] E. G. Bacha, “Response surface methodology modeling, experimental validation, and optimization of acid hydrolysis process parameters for nanocellulose extraction,” South African J. Chem. Eng., vol. 40, pp. 176–185, 2022, https://doi.org/10.1016/j.sajce.2022.03.003.Suche in Google Scholar

[36] F. Sufa, Y. Mehari, W. Mekonin, F. Bidira, and P. Asaithambi, “Progress in Engineering Science Removal of NO - 3 , PO 3 , and color from brewery wastewater by the use of indigenous bio-coagulant-assisted electrocoagulation,” Prog. Eng. Sci., vol. 1, no. 4, p. 100032, 2024 https://doi.org/10.1016/j.pes.2024.100032.Suche in Google Scholar

[37] A. S. Naje and S. A. Abbas, “Electrocoagulation technology in wastewater treatment: a review of methods and applications,” Civ. Environ. Res., vol. 3, no. 11, pp. 29–42, 2013.Suche in Google Scholar

[38] T. E. Aniyikaiye, T. Oluseyi, J. O. Odiyo, and J. N. Edokpayi, “Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria,” Int. J. Environ. Res. Public Health, vol. 16, no. 7, p. 5, 2019, https://doi.org/10.3390/ijerph16071235.Suche in Google Scholar PubMed PubMed Central

[39] A. Shalaby, E. Nassef, A. Mubark, and M. Hussein, “Phosphate removal from wastewater by electrocoagulation using aluminium electrodes to cite this article Phosphate Removal from Wastewater by Phosphate removal from wastewater by electrocoagulation using aluminium electrodes,” Am. J. Environ. Eng. Sci., vol. 1, no. 5, pp. 90–98, 2014.Suche in Google Scholar

[40] M. Moradi and G. Moussavi, “Enhanced treatment of tannery wastewater using the electrocoagulation process combined with UVC/VUV photoreactor: parametric and mechanistic evaluation,” Chem. Eng. J., vol. 358, pp. 1038–1046, 2019. https://doi.org/10.1016/j.cej.2018.10.069.Suche in Google Scholar

[41] S. K. Verma, V. Khandegar, and A. K. Saroha, “Removal of chromium from electroplating industry effluent using electrocoagulation,” J. Hazardous, Toxic, Radioact. Waste, vol. 17, no. 2, pp. 146–152, 2013. https://doi.org/10.1061/(asce)hz.2153-5515.0000170.Suche in Google Scholar

[42] M. Susree, P. Asaithambi, R. Saravanathamizhan, and M. Matheswaran, “Studies on various mode of electrochemical reactor operation for the treatment of distillery effluent,” J. Environ. Chem. Eng., vol. 1, no. 3, pp. 552–558, 2013, https://doi.org/10.1016/j.jece.2013.06.021.Suche in Google Scholar

[43] M. Kumari and S. K. Gupta, “Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP) - an endeavor to diminish probable cancer risk,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019, https://doi.org/10.1038/s41598-019-54902-8.Suche in Google Scholar PubMed PubMed Central

[44] T. K. Trinh and L. S. Kang, “Application of response surface method as an experimental design to optimize coagulation tests,” Environ. Eng. Res., vol. 15, no. 2, pp. 63–70, 2010, https://doi.org/10.4491/eer.2010.15.2.063.Suche in Google Scholar

[45] A. K. Husen, F. Bidira, W. Mekonin Desta, and P. Asaithambi, “COD, color, and turbidity reduction from surface water using natural coagulants: Investigation and optimization,” Prog. Eng. Sci., vol. 1, nos. 2–3, p. 100007, 2024, https://doi.org/10.1016/j.pes.2024.100007.Suche in Google Scholar

[46] R. Bhatnagar, H. Joshi, I. D. Mall, and V. C. Srivastava, “Electrochemical oxidation of textile industry wastewater by graphite electrodes,” J. Environ. Sci. Heal. Part A, vol. 49, no. 8, pp. 955–966, 2014, https://doi.org/10.1080/10934529.2014.894320.Suche in Google Scholar PubMed

[47] S. Jallouli, et al., “Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic process,” J. Water Process Eng., vol. 38, p. 101642, 2020. https://doi.org/10.1016/j.jwpe.2020.101642.Suche in Google Scholar

[48] P. Asaithambi, R. Govindarajan, M. Busier Yesuf, P. Selvakumar, and E. Alemayehu, “Enhanced treatment of landfill leachate wastewater using sono(US)-ozone(O3)–electrocoagulation(EC) process: role of process parameters on color, COD and electrical energy consumption,” Process Saf. Environ. Prot., vol. 142, pp. 212–218, 2020. https://doi.org/10.1016/j.psep.2020.06.024.Suche in Google Scholar

Received: 2025-02-10
Accepted: 2025-07-17
Published Online: 2025-08-11

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2025-0031/pdf
Button zum nach oben scrollen