Startseite Quantum dots for wastewater treatment for the removal of heavy metals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quantum dots for wastewater treatment for the removal of heavy metals

  • Chandranshu Dwivedi , Avinash Ranjan , Ajay Kumar ORCID logo EMAIL logo und Chinnappan Baskar
Veröffentlicht/Copyright: 8. September 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

QDs (Quantum Dots) have been discovered as a revolutionary wastewater treatment solution due to their unique nanoscale properties and the quantum confinement effect. The present review serves to look into the different techniques of synthesis critically, the use of functionalization, and the whole idea of performance evaluation with QDs to give a holistic view of their potential use in environmental applications. By way of studying the plus and minuses of both techniques of the top-down and bottom-up synthesis methods, the dissertation indicates the significance of optimizing factors to improve the performance of colloidal QDs for the final targeted outcomes. Paying a lot of attention to the functionalization techniques is important as it contributes to the QDs’ reactivity and stability. This conclusion points out the existence of QDs in this solution, emphasizing their potential, but also their mentioned challenges of the higher synthesis cost, and security concerns requiring further research.


Corresponding author: Ajay Kumar, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India, E-mail:

Acknowledgments

The author acknowledged the library support provided by Lovely Professional University, India.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Chandranshu Dwivedi and Avinash Ranjan wrote the manuscript. Chinnappan Baskar proofread the manuscript. Ajay Kumar supervised the research, wrote, and proofread the manuscript. All the authors read and approved the final manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: The authors declare that they have no competing interests.

  6. Research funding: The authors received no financial support for the research, authorship, or publication of this article.

  7. Data availability: We declare that all research data related to the article is available in the text of the article.

References

[1] K. Agarwal, H. Rai, and S. Mondal, “Quantum dots: an overview of synthesis, properties, and applications,” Mater. Res. Express, vol. 10, no. 6, p. 062001, 2023. https://doi.org/10.1088/2053-1591/acda17.Suche in Google Scholar

[2] G. Ramalingam, et al.., “Quantum confinement effect of 2D nanomaterials,” in Quantum Dots-Fundamental and Applications, London UK, IntechOpen, 2020.10.5772/intechopen.90140Suche in Google Scholar

[3] M. A. MeloJr. and F. E. Osterloh, “Defect states control effective band gap and photochemistry of graphene quantum dots,” ACS Appl. Mater. Interfaces, vol. 10, no. 32, pp. 27195–27204, 2018, https://doi.org/10.1021/acsami.8b08331.Suche in Google Scholar PubMed

[4] A. R. C. Osypiw, et al.., “Solution-processed colloidal quantum dots for light emission,” Mater. Adv., vol. 3, no. 17, pp. 6773–6790, 2022. https://doi.org/10.1039/D2MA00375A.Suche in Google Scholar

[5] A. S. Subala, K. V. Anand, and S. A. Sibi, “Quantum dots in waste water treatment- review article,” Int. J. Innov. Sci. Res. Technol., vol. 5, no. 8, pp. 591–596, 2020. https://doi.org/10.38124/IJISRT20AUG591.Suche in Google Scholar

[6] P. G. Balkanloo, K. M. Sharifi, and A. P. Marjani, “Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review,” Mater. Adv., vol. 4, no. 19, p. 4272, 2023. https://doi.org/10.1039/D3MA00372H.Suche in Google Scholar

[7] H. Arshad, A. Majid, and M. A. U. Khan, “Quantum dots: synthesis, properties, and applications,” in Quantum Dots for Plant Systems, Cham, Springer International Publishing, 2022, pp. 11–45.10.1007/978-3-031-10216-5_2Suche in Google Scholar

[8] C. Das, M. Sillanpää, S. A. Zaidi, M. A. Khan, and G. Biswas, “Current trends in carbon-based quantum dots development from solid wastes and their applications,” Environ. Sci. Pollut. Res., vol. 30, no. 16, pp. 45528–45554, 2023. https://doi.org/10.1007/s11356-023-25822-y.Suche in Google Scholar PubMed PubMed Central

[9] A. A. Liu, E. Z. Sun, Z. G. Wang, S. L. Liu, and D. W. Pang, “Artificially regulated synthesis of nanocrystals in live cells,” Natl. Sci. Rev., vol. 9, no. 6, p. nwab162, 2022, https://doi.org/10.1093/nsr/nwab162.Suche in Google Scholar PubMed PubMed Central

[10] R. Bilan, F. Fleury, I. Nabiev, and A. Sukhanova, “Quantum dot surface chemistry and functionalization for cell targeting and imaging,” Bioconjugate Chem., vol. 26, no. 4, pp. 609–624, 2015. https://doi.org/10.1021/acs.bioconjchem.5b00069.Suche in Google Scholar PubMed

[11] F. Amin, Z. Ali, and G. Korotcenkov, “II-VI quantum dots and their surface functionalization,” in Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors, G. Korotcenkov, Ed., Cham, Springer, 2023.10.1007/978-3-031-24000-3Suche in Google Scholar

[12] X. Tang and F. Yang, “Quantum dots: synthesis, characterization, and applications,” in Handbook of Energy Materials, R. Gupta, Ed., Singapore, Springer, 2022.10.1007/978-981-16-4480-1_27-1Suche in Google Scholar

[13] M. Liu, N. Yazdani, M. Yarema, M. Jansen, V. Wood, and E. H. Sargent, “Colloidal quantum dot electronics,” Nat. Electron., vol. 4, no. 8, pp. 548–558, 2021. https://doi.org/10.1038/s41928-021-00632-7.Suche in Google Scholar

[14] Y. Pu, F. Cai, D. Wang, J. X. Wang, and J. F. Chen, “Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review,” Ind. Eng. Chem. Res., vol. 57, no. 6, pp. 1790–1802, 2018. https://doi.org/10.1021/acs.iecr.7b04836.Suche in Google Scholar

[15] C. E. Reilly, S. Keller, S. Nakamura, and S. P. DenBaars, “Metalorganic chemical vapor deposition of InN quantum dots and nanostructures,” Light: Sci. Appl., vol. 10, no. 1, p. 150, 2021. https://doi.org/10.1038/s41377-021-00593-8.Suche in Google Scholar PubMed PubMed Central

[16] S. Dias, K. Kumawat, S. Biswas, and S. B. Krupanidhi, “Solvothermal synthesis of Cu2SnS3 quantum dots and their application in near-infrared photodetectors,” Inorg. Chem., vol. 56, no. 4, pp. 2198–2203, 2017. https://doi.org/10.1021/acs.inorgchem.6b02832.Suche in Google Scholar PubMed

[17] A. Saha, L. Bhattacharjee, and R. R. Bhattacharjee, “Synthesis of carbon quantum dots,” in Carbon Quantum Dots for Sustainable Energy and Optoelectronics, Cambridge, Woodhead Publishing, 2023, pp. 39–54.10.1016/B978-0-323-90895-5.00014-XSuche in Google Scholar

[18] B. Thangaraj, P. R. Solomon, and S. Ranganathan, “Synthesis of carbon quantum dots with special reference to biomass as a source-a review,” Curr. Pharm. Des., vol. 25, no. 13, pp. 1455–1476, 2019. https://doi.org/10.2174/1381612825666190618154518.Suche in Google Scholar PubMed

[19] T. V. De Medeiros, J. Manioudakis, F. Noun, J. R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” J. Mater. Chem. C, vol. 7, no. 24, pp. 7175–7195, 2019. https://doi.org/10.1039/C9TC01640F.Suche in Google Scholar

[20] O. Soledad-Flores, S. J. Bailón-Ruiz, and F. Román-Velázquez, “Rapid synthesis of non-toxic, water-stable carbon dots using microwave irradiation,” Micro, vol. 4, no. 4, pp. 659–669, 2024. MDPI. https://doi.org/10.3390/micro4040040.Suche in Google Scholar

[21] T. Balakrishnan, W. L. Ang, E. Mahmoudi, A. W. Mohammad, and N. S. Sambudi, “Formation mechanism and application potential of carbon dots synthesized from palm kernel shell via microwave assisted method,” Carbon Resour. Convers., vol. 5, no. 2, pp. 150–166, 2022. https://doi.org/10.1016/j.crcon.2022.01.003.Suche in Google Scholar

[22] S. A. Shaik, S. Sengupta, R. S. Varma, M. B. Gawande, and A. Goswami, “Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: a timely update,” ACS Sustain. Chem. Eng., vol. 9, no. 1, pp. 3–49, 2020. https://doi.org/10.1021/acssuschemeng.0c04727.Suche in Google Scholar

[23] N. A. Pechnikova, K. Domvri, K. Porpodis, M. S. Istomina, A. V. Iaremenko, and A. V. Yaremenko, “Carbon quantum dots in biomedical applications: advances, challenges, and future prospects,” Aggregate, vol. 6, no. 3, p. e707, 2025. https://doi.org/10.1002/agt2.707.Suche in Google Scholar

[24] V. Bressi, A. M. Balu, D. Iannazzo, and C. Espro, “Recent advances in the synthesis of carbon dots from renewable biomass by high-efficient hydrothermal and microwave green approaches,” Curr. Opin. Green Sustainable Chem., vol. 40, p. 100742, 2023. https://doi.org/10.1016/j.cogsc.2022.100742.Suche in Google Scholar

[25] J. Dhariwal, G. K. Rao, and D. Vaya, “Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring,” RSC Sustain., vol. 2, no. 1, pp. 11–36, 2024, https://doi.org/10.1039/d3su00375b.Suche in Google Scholar

[26] S. Li, et al.., “Ultrastable zero-dimensional Cs4PbBr6 perovskite quantum dot glass,” ACS Sustain. Chem. Eng., vol. 8, no. 29, pp. 10646–10652, 2020.10.1021/acssuschemeng.0c03914Suche in Google Scholar

[27] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta, “Shuttling a single charge across a one-dimensional array of silicon quantum dots,” Nat. Commun., vol. 10, no. 1, p. 1063, 2019. https://doi.org/10.1038/s41467-019-08970-z.Suche in Google Scholar PubMed PubMed Central

[28] Y. Niu, J. Li, J. Gao, X. Ouyang, L. Cai, and Q. Xu, “Two-dimensional quantum dots for biological applications,” Nano Res., vol. 14, no. 11, pp. 3820–3839, 2021. https://doi.org/10.1007/s12274-021-3757-5.Suche in Google Scholar

[29] F. Pelayo García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, “Semiconductor quantum dots: technological progress and future challenges,” Science (New York, N.Y.), vol. 373, no. 6555, p. eaaz85411, 2021. https://doi.org/10.1126/science.aaz8541.Suche in Google Scholar PubMed

[30] W. Fawaz, J. Hasian, and I. Alghoraibi, “Synthesis and physicochemical characterization of carbon quantum dots produced from folic acid,” Sci. Rep., vol. 13, no. 1, p. 18641, 2023. https://doi.org/10.1038/s41598-023-46084-1.Suche in Google Scholar PubMed PubMed Central

[31] T. Zhang, et al.., “Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion,” Nat. Commun., vol. 12, no. 1, p. 5265, 2021. https://doi.org/10.1038/s41467-021-25640-1.Suche in Google Scholar PubMed PubMed Central

[32] R. Köhler, et al.., “Structural characterisation of quantum dots by X-ray diffraction and TEM,” in Semiconductor Nanostructures. NanoScience and Technology, D. Bimberg, Ed., Berlin, Heidelberg, Springer, 2008.10.1007/978-3-540-77899-8_5Suche in Google Scholar

[33] X. F. Zhang, “Routine microscopy in quantum dot industry,” Microsc. Microanal., vol. 21, no. S2, pp. 702–703, 2019, https://doi.org/10.1017/S1431927619004240.Suche in Google Scholar

[34] K. Agarwal, H. Rai, and S. Mondal, “Quantum dots: an overview of synthesis, properties, and applications,” Mater. Res. Express, vol. 10, no. 6, p. 062001, 2023. https://doi.org/10.1088/2053-1591/acda17.Suche in Google Scholar

[35] J. Bernardi, “Energy-dispersive X-ray spectroscopy,” in Imaging Modalities for Biological and Preclinical Research: A Compendium, Part I: Ex vivo biological imaging, vol. 1, Bristol, UK, IOP Publishing, 2021, pp. 1–9.10.1088/978-0-7503-3059-6ch41Suche in Google Scholar

[36] K. Scheerschmidt and P. Werner, “Characterization of structure and composition of quantum dots by transmission electron microscopy,” in Nano-Optoelectronics. NanoScience and Technology, M. Grundmann, Ed., Berlin, Heidelberg, Springer, 2002.10.1007/978-3-642-56149-8_3Suche in Google Scholar

[37] L. W. Wang and A. Zunger, “Pseudopotential theory of nanometer silicon quantum dots,” Stud. Surf. Sci. Catal., vol. 103, pp. 161–207, 1997, Elsevier https://doi.org/10.1016/S0167-2991(97)81103-2.Suche in Google Scholar

[38] F. Weigert, et al.., “Combining HR-TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots,” Sci. Rep., vol. 10, no. 1, p. 20712, 2020. https://doi.org/10.1038/s41598-020-77530-z.Suche in Google Scholar PubMed PubMed Central

[39] T. Noblet, et al.., “Semiconductor quantum dots reveal dipolar coupling from exciton to ligand vibration,” Commun. Chem., vol. 1, no. 1, p. 76, 2018. https://doi.org/10.1038/s42004-018-0079-y.Suche in Google Scholar

[40] Y Zikang, et al.., “Phonon-assisted up-conversion photoluminescence of quantum dots,” Nat. Commun., vol. 12, no. 1, p. 4283, 2021. https://doi.org/10.1038/s41467-021-24560-4.Suche in Google Scholar PubMed PubMed Central

[41] D. Liu, et al.., “Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition,” Nat. Commun., vol. 9, no. 1, p. 193, 2018. https://doi.org/10.1038/s41467-017-02627-5.Suche in Google Scholar PubMed PubMed Central

[42] A. Radchanka, V. Hrybouskaya, A. Iodchik, A. W. Achtstein, and M. Artemyev, “Zeta potential-based control of CdSe/ZnS quantum dot photoluminescence,” J. Phys. Chem. Lett., vol. 13, no. 22, pp. 4912–4917, 2022. https://doi.org/10.1021/acs.jpclett.2c00841.Suche in Google Scholar PubMed

[43] L. Sapienza, et al., “Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices,” Sci. Rep., vol. 7, no. 1, p. 6205, 2017. https://doi.org/10.1038/s41598-017-06566-5.Suche in Google Scholar PubMed PubMed Central

[44] M. BruchezJr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science (New York, N.Y.), vol. 281, no. 5385, pp. 2013–2016, 1998. https://doi.org/10.1126/science.281.5385.2013.Suche in Google Scholar PubMed

[45] L. Shi, et al., “Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores,” Nanoscale, vol. 8, no. 30, pp. 14374–14378, 2016. https://doi.org/10.1039/C6NR00451B.Suche in Google Scholar

[46] D. Wigger, et al., “Controlled coherent coupling in a quantum dot molecule revealed by ultrafast four-wave mixing spectroscopy,” ACS photonics, vol. 10, no. 5, pp. 1504–1511, 2023. https://doi.org/10.1021/acsphotonics.3c00108.Suche in Google Scholar PubMed PubMed Central

[47] F. Cai, X. Liu, S. Liu, H. Liu, and Y. Huang, “A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr (VI) in aqueous media,” RSC Adv., vol. 4, no. 94, pp. 52016–52022, 2014. https://doi.org/10.1039/C4RA09320H.Suche in Google Scholar

[48] N. U. M. Nizam, M. M. Hanafiah, E. Mahmoudi, A. W. Mohammad, and A. A. Oyekanmi, “Effective adsorptive removal of dyes and heavy metal using graphene oxide based pre-treated with NaOH/H2SO4 rubber seed shells synthetic graphite precursor: equilibrium isotherm, kinetics and thermodynamic studies,” Sep. Purif. Technol., vol. 289, p. 120730, 2022. https://doi.org/10.1016/j.seppur.2022.120730.Suche in Google Scholar

[49] K. C. Hui, W. L. Ang, and N. S. Sambudi, “Nitrogen and bismuth-doped rice husk-derived carbon quantum dots for dye degradation and heavy metal removal,” J. Photochem. Photobiol. Chem., vol. 418, p. 113411, 2021. https://doi.org/10.1016/j.jphotochem.2021.113411.Suche in Google Scholar

[50] R. Hardman, “A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors,” Environ. Health Perspect., vol. 114, no. 2, pp. 165–172, 2006. https://doi.org/10.1289/ehp.8284.Suche in Google Scholar PubMed PubMed Central

[51] G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environ. Health Perspect., vol. 113, no. 7, pp. 823–839, 2005. https://doi.org/10.1289/ehp.7339.Suche in Google Scholar PubMed PubMed Central

[52] V. L. Colvin, “The potential environmental impact of engineered nanomaterials,” Nat. Biotechnol., vol. 21, no. 10, pp. 1166–1170, 2003. https://doi.org/10.1038/nbt875.Suche in Google Scholar PubMed

[53] T. Aubert, et al., “General expression for the size-dependent optical properties of quantum dots,” Nano Lett., vol. 22, no. 4, pp. 1778–1785, 2022. https://doi.org/10.1021/acs.nanolett.2c00056.Suche in Google Scholar PubMed

[54] S. Sharma and P. Chowdhury, “Tunable dual photoluminescence from synthesized urea-based carbon quantum dots: a DFT based simulation on structural insights,” Opt. Mater., vol. 153, p. 115617, 2024. https://doi.org/10.1016/j.optmat.2024.115617.Suche in Google Scholar

[55] M. I. Ahamed, T. Ayyasamy, N. Prathap, and S. Ahamed, “Quantum size effects on PbSeS semiconductor quantum dots, an experimental and theoretical approach,” Chalcogenide Lett., vol. 21, no. 3, 2024.Suche in Google Scholar

[56] Y. Lv, et al., “A CdSe/ZnS core/shell quantum dot-based fluorescence-linked immunosorbent assay for the sensitive and accurate detection of procalcitonin,” Chem. Lett., vol. 50, no. 2, pp. 235–239, 2021. https://doi.org/10.1246/cl.200655.Suche in Google Scholar

[57] M. Saikia, T. Das, and B. K. Saikia, “A novel rapid synthesis of highly stable silver nanoparticle/carbon quantum dot nanocomposites derived from low-grade coal feedstock,” New J. Chem., vol. 46, no. 2, pp. 309–321, 2022. https://doi.org/10.1039/D1NJ04039A.Suche in Google Scholar

[58] S. Phetsang, et al., “Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells,” Nanoscale Adv., vol. 2, no. 1, pp. 201–209, 2019. https://doi.org/10.1039/C8NA00119G.Suche in Google Scholar

[59] B. K. John, T. Abraham, and B. Mathew, “A review on characterization techniques for carbon quantum dots and their applications in agrochemical residue detection,” J. Fluoresc., vol. 32, pp. 449–471, 2022. https://doi.org/10.1007/s10895-021-02852-8\.10.1007/s10895-021-02852-8Suche in Google Scholar PubMed

[60] D. S. Chauhan, M. A. Quraishi, and C. Verma, “Carbon nanodots: recent advances in synthesis and applications,” Carbon Lett., vol. 32, no. 7, pp. 1603–1629, 2022. https://doi.org/10.1007/s42823-022-00359-1.Suche in Google Scholar

[61] M. Borovaya, I. Horiunova, S. Plokhovska, N. Pushkarova, Y. Blume, and A. Yemets, “Synthesis, properties and bioimaging applications of silver-based quantum dots,” Int. J. Mol. Sci., vol. 22, no. 22, p. 12202, 2021. https://doi.org/10.3390/ijms222212202.Suche in Google Scholar PubMed PubMed Central

[62] D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. (Deerfield Beach, Fla.), vol. 22, no. 6, pp. 734–738, 2010. https://doi.org/10.1002/adma.200902825.Suche in Google Scholar PubMed

[63] X. Guo, C. Wang, Z. Yu, L. Chen, and S. Chen, “Facile access to versatile fluorescent carbon dots toward light-emitting diodes,” Chem. Commun., vol. 48, no. 21, pp. 2692–2694, 2012. https://doi.org/10.1039/C2CC17769B.Suche in Google Scholar PubMed

[64] P. Gozali Balkanloo, M. Sharifi, and A. Poursattar Marjani, “Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review,” Mater. Adv., vol. 4, no. 19, pp. 375–390, 2023. https://doi.org/10.1039/D3MA00372H.Suche in Google Scholar

[65] Y. Zhao, X. Sun, and X. Zhang, “Excitation wavelength-dependent characteristics of fluorescent carbon nanodots,” J. Anal. Sci. Technol., vol. 12, no. 1, pp. 1–10, 2021, https://doi.org/10.1007/s42823-021-00011-6.Suche in Google Scholar

[66] T. Ma, J. Wang, J. Qian, S. Ye, Y. Zhou, and Y. Wang, “Synthesis and optimization of cesium lead halide perovskite QDs,” Appl. Phys. A, vol. 127, no. 9, p. 659, 2021. https://doi.org/10.1007/s00339-021-04807-z.Suche in Google Scholar

[67] S. Morozova, M. Alikina, A. Vinogradov, and M. Pagliaro, “Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes,” Front. Chem., vol. 8, p. 191, 2020, https://doi.org/10.3389/fchem.2020.00191.Suche in Google Scholar PubMed PubMed Central

[68] W. Deng, H. Fang, X. Jin, X. Zhang, and J. Jie, “Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes,” J. Mater. Chem. C, vol. 6, no. 18, pp. 4727–4743, 2018. https://doi.org/10.1039/C8TC01214H.Suche in Google Scholar

[69] Q. Zhang, et al., “Organic–inorganic hybrid perovskite quantum dot light-emitting diodes using a graphene electrode and modified PEDOT:PSS,” RSC Adv., vol. 9, no. 21, pp. 11998–12004, 2019. https://doi.org/10.1039/C9RA02730K.Suche in Google Scholar

[70] A. Kumar, D. Maurya, M. Saikia, and R. D. Navaneethan, “A review on plant-derived carbon quantum dots for bio-imaging,” Mater. Adv., vol. 4, no. 18, pp. 3951–3966, 2023. https://doi.org/10.1039/D3MA00254C.Suche in Google Scholar

[71] N. Le and K. Kim, “Current advances in the biomedical applications of quantum dots: promises and challenges,” Int. J. Mol. Sci., vol. 24, no. 16, p. 12682, 2023. https://doi.org/10.3390/ijms241612682.Suche in Google Scholar PubMed PubMed Central

[72] Y. Yang, G. Mao, X. Ji, and Z. He, “DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy,” J. Mater. Chem. B, vol. 8, no. 1, p. 191, 2020. https://doi.org/10.1039/C9TB01870K.Suche in Google Scholar PubMed

[73] M. Jouyandeh, et al., “Quantum dots for photocatalysis: synthesis and environmental applications,” Green Chem., vol. 23, no. 14, pp. 5504–5541, 2021. https://doi.org/10.1039/D1GC00639H.Suche in Google Scholar

[74] Z. Ikram, E. Azmat, and M. Perviaz, “Degradation efficiency of organic dyes on CQDs as photocatalysts: a review,” ACS Omega, vol. 9, no. 9, pp. 10017–10029, 2024. https://doi.org/10.1021/acsomega.3c09547.Suche in Google Scholar PubMed PubMed Central

[75] E. Parvathi, N. Dilraj, C. V. Akshaya, and N. K. Deepak, “A Review on Graphene-based adsorbents for the remediation of toxic heavy metals from aqueous sources,” Int. J. Environ. Sci. Technol., vol. 20, no. 10, pp. 11645–11672, 2023. https://doi.org/10.1007/s13762-022-04587-wXue.Suche in Google Scholar

[76] D. Carolan, C. Rocks, D. B. Padmanaban, P. Maguire, V. Svrcek, and D. Mariotti, “Environmentally friendly nitrogen-doped carbon quantum dots for next-generation solar cells,” Sustain. Energy Fuels, vol. 1, no. 7, pp. 1611–1619, 2017. https://doi.org/10.1039/C7SE00158D.Suche in Google Scholar

[77] M. Yahaya Pudza, Z. Zainal Abidin, S. Abdul Rashid, F. Md Yasin, A. S. M. Noor, and M. A. Issa, “Eco-friendly sustainable fluorescent carbon dots for the adsorption of heavy metal ions in aqueous environment,” Nanomaterials, vol. 10, no. 2, p. 315, 2020. https://doi.org/10.3390/nano10020315.Suche in Google Scholar PubMed PubMed Central

[78] S. Singh, S. Garg, and A. D. Saran, “Photocatalytic activity of CdS and CdSe quantum dots for degradation of 3-aminopyridine,” Nanotechnol. Environ. Eng., vol. 6, no. 3, p. 65, 2021. https://doi.org/10.1007/s41204-021-00159-4.Suche in Google Scholar

[79] S. Sonam, P. Patel, D. Pandey, A. Sharma, and K. Jain, “Quantum dots: functionalization and theranostic applications,” in Multifunctional and Targeted Theranostic Nanomedicines, K. Jain, and N. K. Jain, Eds., Singapore, Springer, 2023.10.1007/978-981-99-0538-6_10Suche in Google Scholar

[80] H. Targhan, et al.., “Photocatalytic removal of imidacloprid pesticide from wastewater using CdS QDs passivated by CQDs containing thiol groups,” Sci. Rep., vol. 14, no. 1, p. 530, 2024. https://doi.org/10.1038/s41598-023-49972-8.Suche in Google Scholar PubMed PubMed Central

[81] K. Sridharan, V. Ilango, and R. S. Samuel, “Water purification by carbon quantum dots,” in Inorganic-Organic Composites for Water and Wastewater Treatment. Environmental Footprints and Eco-Design of Products and Processes, E. Lichtfouse, S. S. Muthu, and A. Khadir, Eds., Singapore, Springer, 2022.10.1007/978-981-16-5928-7_4Suche in Google Scholar

[82] Y. Yan, et al., “Recent advances on graphene quantum dots: from chemistry and physics to applications,” Adv. Mater. (Deerfield Beach, Fla.), vol. 31, no. 21, p. e1808283, 2019. https://doi.org/10.1002/adma.201808283.Suche in Google Scholar PubMed

[83] J. Shi, et al., “All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses,” Nat. Nanotechnol., vol. 16, no. 12, pp. 1355–1361, 2021. https://doi.org/10.1038/s41565-021-01016-w.Suche in Google Scholar PubMed

[84] J. Xiong, et al., “CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production,” Appl Catal B Environ, vol. 266, pp. 118602–11862, 2020. https://doi.org/10.1016/j.apcatb.2020.118602.Suche in Google Scholar

[85] S. Pak, et al., “Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors,” ACS Appl. Mater. Interfaces, vol. 10, no. 44, pp. 38264–38271, 2018. https://doi.org/10.1021/acsami.8b14408.Suche in Google Scholar PubMed PubMed Central

[86] U. R. R. P. Remli, A. A. Aziz, L. C. Sim, M. U. Monir, and K. H. Leong, “Photocatalytic applications of carbon quantum dots for wastewater treatment,” in Carbon Quantum Dots for Sustainable Energy and Optoelectronics, Cambridge, Woodhead Publishing, 2023, pp. 263–294.10.1016/B978-0-323-90895-5.00004-7Suche in Google Scholar

[87] T. Jin, et al.., “Synthesis of g-C3N4/CQDs composite and its photocatalytic degradation property for Rhodamine B,” Carbon Lett., vol. 32, no. 6, pp. 1451–1462, 2022. https://doi.org/10.1007/s42823-022-00382-2.Suche in Google Scholar

[88] G. Tchobanoglous, WateReuse Research Foundation and WateReuse California, Direct potable reuse: A path forward, Alexandria, VA, USA, WateReuse Research Foundation, 2011.Suche in Google Scholar

[89] S. Mudgal, et al.., Optimization water reuse in EU: final report; BIO by deloitte, Brussels, Belgium, European Union Publications, 2015, p. 199.Suche in Google Scholar

[90] A. N. Angelakis and P. Gikas, “Water Reuse: overview of current practices and trends in the World with emphasis in EU,” Water Utility J., vol. 8, no. 67, pp. 67–78, 2014.Suche in Google Scholar

[91] S. Loghambal, A. J. Agvinos Catherine, and S. Velu Subash, “Analysis of Langmuir-hinshelwood kinetics model for photocatalytic degradation of aqueous direct blue 71 through analytical expression,” Int. J. Math. Anal., vol. 6, nos. 1 - E, pp. 903–913, 2018.Suche in Google Scholar

[92] H. D. Tran, D. Q. Nguyen, T. Phuong, U. N. P. Tran, and R. S. C. Advances, “Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach,” RSC Adv., vol. 13, no. 25, pp. 16915–16925, 2023. https://doi.org/10.1039/D3RA01970E.Suche in Google Scholar

[93] P. Purkayastha, et al.., “Purcell enhanced emission and saturable absorption of cavity-coupled CsPbBr3 quantum dots,” ACS Photonics, vol. 11, no. 4, pp. 1638–1644, 2024. https://doi.org/10.48550/arXiv.2312.07800.Suche in Google Scholar

[94] P. Kumar, S. Dua, R. Kaur, M. Kumar, and G. Bhatt, “A review on advancements in carbon quantum dots and their application in photovoltaics,” RSC Adv., vol. 12, no. 8, pp. 4675–4693, 2022. https://doi.org/10.1039/D1RA08452F.Suche in Google Scholar

[95] H. Jung, V. S. Sapner, A. Adhikari, B. R. Sathe, and R. Patel, “Recent progress on carbon quantum dots based photocatalysis,” Front. Chem., vol. 10, p. 881495, 2022. https://doi.org/10.3389/fchem.2022.881495.Suche in Google Scholar PubMed PubMed Central

[96] C. H. Nguyen, M. L. Tran, T. T. V. Tran, and R. S. Juang, “Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites,” Sep. Purif. Technol., vol. 232, p. 115962, 2020. https://doi.org/10.1016/j.seppur.2019.115962.Suche in Google Scholar

[97] S. Sahai, A. Jangra, L. M. Thomas, and V. R. Satsangi, “Quantum dots as efficient solar energy absorber: review on photovoltaics and photoelectrochemical systems,” J. Inst. Eng. India Ser. D, vol. 105, no. 1, pp. 553–566, 2023. https://doi.org/10.1007/s40033-023-00490-x.Suche in Google Scholar

[98] X. Wang, et al.., “Photoinduced electron transfers with carbon dots,” Chem. Commun., no. 25, pp. 3774–3776, 2009, https://doi.org/10.1039/B906252A.Suche in Google Scholar

[99] M. A. Basit, F. Raza, G. Ali, A. Parveen, M. Khan, and T. J. Park, “Nanoscale modification of carbon fibers with CdS quantum-dot sensitized TiO2: photocatalytic and photothermal evaluation under visible irradiation,” Mater. Sci. Semiconductor Process., vol. 142, p. 106485, 2022. https://doi.org/10.1016/j.mssp.2022.106485.Suche in Google Scholar

[100] B. Chang, Y. Guo, H. Liu, L. Li, and B. Yang, “Engineering a surface defect-rich Ti3C2 quantum dots/mesoporous C3N4 hollow nanosphere Schottky junction for efficient N2 photofixation,” J. Mater. Chem. A, vol. 10, no. 6, pp. 3134–3145, 2022. https://doi.org/10.1039/D1TA09941H.Suche in Google Scholar

[101] X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, and N. Koshizaki, “Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents,” Chem. Commun., vol. 47, no. 3, pp. 932–934, 2011. https://doi.org/10.1039/C0CC03552A.Suche in Google Scholar PubMed

[102] D. Borah, et al.., “Photocatalytic and antibacterial activity of fluorescent CdS quantum dots synthesized using aqueous extract of cyanobacterium nostoc carneum,” BioNanoSci, vol. 13, no. 2, pp. 650–666, 2023. https://doi.org/10.1007/s12668-023-01115-z.Suche in Google Scholar

[103] M. Jani, J. A. Arcos-Pareja, and M. Ni, “Engineered zero-dimensional fullerene/carbon dots-polymer based nanocomposite membranes for wastewater treatment,” Molecules (Basel, Switzerland), vol. 25, no. 21, p. 4934, 2020. https://doi.org/10.3390/molecules25214934.Suche in Google Scholar PubMed PubMed Central

[104] A. S. Eltaweil, G. S. Elgarhy, G. M. El-Subruiti, and A. M. Omer, “Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye,” Int. J. Biol. Macromol., vol. 154, pp. 307–318, 2020. https://doi.org/10.1016/j.ijbiomac.2020.03.122.Suche in Google Scholar PubMed

[105] I. Shtepliuk, N. M. Caffrey, T. Iakimov, V. Khranovskyy, I. A. Abrikosov, and R. Yakimova, “On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene,” Sci. Rep., vol. 7, no. 1, p. 3934, 2017. https://doi.org/10.1038/s41598-017-04339-8.Suche in Google Scholar PubMed PubMed Central

[106] J. Hensel, G. Wang, Y. Li, and J. Z. Zhang, “Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation,” Nano Lett., vol. 10, no. 2, pp. 478–483, 2010. https://doi.org/10.1021/nl903217w.Suche in Google Scholar PubMed

[107] F. Arcudi, L. Đorđević, B. Nagasing, S. I. Stupp, and E. A. Weiss, “Quantum dot-sensitized photoreduction of CO2 in water with turnover number > 80,000,” J. Am. Chem. Soc., vol. 143, no. 43, pp. 18131–18138, 2021. https://doi.org/10.1021/jacs.1c06961.Suche in Google Scholar PubMed

[108] S. Korkut, V. Vatanpour, and I. Koyuncu, “Carbon-based quantum dots in fabrication and modification of membranes: a review,” Sep. Purif. Technol., vol. 326, p. 124876, 2023. https://doi.org/10.1016/j.seppur.2023.124876.Suche in Google Scholar

[109] S. Martini, “Membrane technology for water pollution control: a review of recent hybrid mechanism,” J. Rekayasa Kimia Lingkungan, vol. 17, no. 1, pp. 83–96, 2022. https://doi.org/10.23955/rkl.v17i1.23610.Suche in Google Scholar

[110] N. Rosman, W. Norharyati, M. A. Mohamed, J. Jaafar, A. Ismail, and Z. Harun, “Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue,” J. Colloid Interface Sci., vol. 532, 2018, https://doi.org/10.1016/j.jcis.2018.07.118.Suche in Google Scholar PubMed

[111] H. Su, et al., “Recent advances in quantum dot catalysts for hydrogen evolution: synthesis, characterization, and photocatalytic application,” Catal. Sci. Technol., vol. 15, no. 3, pp. 124–137, 2023. https://doi.org/10.1002/cey2.280.Suche in Google Scholar

[112] R. Sumi, A. R. Warrier, and C. Vijayan, “Visible-light driven photocatalytic activity of β-indium sulfide (In2S3) quantum dots embedded in Nafion matrix,” J. Phys. D: Appl. Phys., vol. 47, no. 10, p. 105103, 2014. https://doi.org/10.1088/0022-3727/47/10/105103.Suche in Google Scholar

[113] Q. Zhang, X. Quan, H. Wang, S. Chen, Y. Su, and Z. Li, “Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment,” Sci. Rep., vol. 7, no. 1, p. 3128, 2017. https://doi.org/10.1038/s41598-017-03347-y.Suche in Google Scholar PubMed PubMed Central

[114] S. G. Yim, Y. J. Kim, Y. E. Kang, B. K. Moon, E. S. Jung, and S. Y. Yang, “Size fractionation of fluorescent graphene quantum dots using a cross-flow membrane filtration system,” Nanomaterials (Basel, Switzerland), vol. 8, no. 11, p. 959, 2018. https://doi.org/10.3390/nano8110959.Suche in Google Scholar PubMed PubMed Central

[115] D. D. Shao, et al., “Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine,” ACS Appl. Mater. Interfaces, vol. 12, no. 1, pp. 580–590, 2020. https://doi.org/10.1021/acsami.9b16704.Suche in Google Scholar PubMed

[116] N. A. Mahat, S. A. Shamsudin, N. Jullok, and A. H. Ma’Radzi, “Carbon quantum dots embedded polysulfone membranes for antibacterial performance in the process of forward osmosis,” Desalination, vol. 493, p. 114618, 2020.10.1016/j.desal.2020.114618Suche in Google Scholar

[117] J. Sun, et al., “Amino-embedded carbon quantum dots incorporated thin-film nanocomposite membrane for desalination by pervaporation,” Desalination, vol. 533, p. 115742, 2022. https://doi.org/10.1016/j.desal.2022.115742.Suche in Google Scholar

[118] R. Bi, Q. Zhang, R. Zhang, Y. Su, and Z. Jiang, “Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property,” J. Membr. Sci., vol. 554, pp. 83–92, 2018. https://doi.org/10.1016/j.memsci.2018.02.010.Suche in Google Scholar

[119] V. Vatanpour, et al., “Anti-fouling and permeable polyvinyl chloride nanofiltration membranes embedded by hydrophilic graphene quantum dots for dye wastewater treatment,” J. Water Proc. Eng., vol. 38, p. 101652, 2020. https://doi.org/10.1016/j.jwpe.2020.101652.Suche in Google Scholar

[120] C. I. Covaliu-Mierlă, O. Păunescu, and H. Iovu, “Recent advances in membranes used for nanofiltration to remove heavy metals from wastewater: a review,” Membranes, vol. 13, no. 7, p. 643, 2023. https://doi.org/10.3390/membranes13070643.Suche in Google Scholar PubMed PubMed Central

[121] A. E. D. Mahmoud and E. Mostafa, “Nanofiltration membranes for the removal of heavy metals from aqueous solutions: preparations and applications,” Membranes, vol. 13, no. 9, p. 789, 2023. https://doi.org/10.3390/membranes13090789.Suche in Google Scholar PubMed PubMed Central

[122] W. C. Chong, M. C. Y. Lim, C. H. Koo, Y. L. Pang, and S.-O. Lai, “Adsorptive membranes for heavy metal removal – a mini review,” AIP Conf. Proc., vol. 2157, no. 1, p. 020005, 2019. https://doi.org/10.1063/1.5126540.Suche in Google Scholar

[123] H. Xiang, X. Min, C. J. Tang, M. Sillanpää, and F. Zhao, “Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review,” J. Water Proc. Eng., vol. 49, p. 103023, 2022. https://doi.org/10.1016/j.jwpe.2022.103023.Suche in Google Scholar

[124] Khulbe, K. C., Matsuura, (2018, “Removal of heavy metals and pollutants by membrane adsorption techniques,” J. Environ. Health Sci. Eng., vol. 8, no. 19, Art. no. 19. https://doi.org/10.1007/s13201-018-0661-6 Suche in Google Scholar

[125] A. A. H. Abdellatif, M. A. Younis, M. Alsharidah, O. Al Rugaie, and H. M. Tawfeek, “Biomedical applications of quantum dots: overview, challenges, and clinical potential,” Int. J. Nanomed., vol. 17, pp. 1951–1970, 2022. https://doi.org/10.2147/IJN.S357980.Suche in Google Scholar PubMed PubMed Central

[126] M. A. Cotta, “Quantum dots and their applications: what lies ahead?” ACS Appl. Nano Mater., vol. 3, no. 6, pp. 4920–4924, 2020. https://doi.org/10.1021/acsanm.0c01386.Suche in Google Scholar

[127] C. O’Sullivan, C. Arson, and B. Coasne, “A perspective on Darcy’s law across the scales: from physical foundations to particulate mechanics,” J. Eng. Mech., vol. 148, no. 11, 2022, https://doi.org/10.1061/(ASCE)EM.1943-7889.0002153.Suche in Google Scholar

[128] M. E. Rosti, S. Pramanik, L. Brandt, and D. Mitra, “The breakdown of Darcy’s law in a soft porous material,” Soft Matter, vol. 16, no. 1, pp. 939–944, 2020. https://doi.org/10.1039/C9SM01678C.Suche in Google Scholar

[129] Y. Teng, Z. Li, and C. Chen, “A comprehensive review of pre-Darcy flows in low-permeability porous media,” arXiv preprint arXiv:2401.04930, 2024, https://doi.org/10.48550/arXiv.2401.04930.Suche in Google Scholar

[130] T. Chevalier and L. Talon, “Generalization of Darcy’s law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes,” Phys. Rev. E, vol. 91, no. 2, p. 023011, 2015. https://doi.org/10.1103/PhysRevE.91.023011.Suche in Google Scholar PubMed

[131] O. Mokhtari, J. C. Latché, M. Quintard, and Y. Davit, “A modified Darcy’s law for viscoelastic flows of highly dilute polymer solutions through porous media,” J. Non-Newtonian Fluid Mech., vol. 309, p. 104919, 2022.10.1016/j.jnnfm.2022.104919Suche in Google Scholar

[132] W. G. Gray and C. T. Miller, “Examination of Darcy’s law for flow in porous media with variable porosity,” Environ. Sci. Technol., vol. 38, no. 22, pp. 5895–5901, 2004. https://doi.org/10.1021/es049728w.Suche in Google Scholar PubMed

[133] V. Sharma, P. Tiwari, N. Kaur, and S. M. Mobin, “Optical nanosensors based on fluorescent carbon dots for the detection of water contaminants: a review,” Environ. Chem. Lett., vol. 19, no. 4, pp. 3229–3241, 2021. https://doi.org/10.1007/s10311-021-01241-8.Suche in Google Scholar

[134] G. Zheng, et al.., “Water pollution control and treatment based on quantum dot chemical and biological high-sensitivity sensing,” J. Sens., vol. 2021, p. 8704363, 2021.10.1155/2021/8704363Suche in Google Scholar

[135] M. Li, T. Chen, J. J. Gooding, and J, “Review of carbon and graphene quantum dots for sensing,” ACS Sens., vol. 4, no. 7, pp. 1732–1748, 2019. https://doi.org/10.1021/acssensors.9b00514.Suche in Google Scholar PubMed

[136] Z. Wang, B. Yao, Y. Xiao, X. Tian, and Y. Wang, “Fluorescent quantum dots and its composites for highly sensitive detection of heavy metal ions and pesticide residues: a review,” Chemosensors, vol. 11, no. 7, p. 405, 2023. https://doi.org/10.3390/chemosensors11070405.Suche in Google Scholar

[137] M. Ganesan and P. Nagaraaj, “Quantum dots as nanosensors for detection of toxics: a literature review,” Anal. Methods, vol. 12, no. 35, pp. 4254–4275, 2020. https://doi.org/10.1039/D0AY01293.Suche in Google Scholar

[138] A. Mirzaei, Z. Kordrostami, M. Shahbaz, J. Y. Kim, H. W. Kim, and S. S. Kim, “Resistive-based gas sensors using quantum dots: a review,” Sensors, vol. 22, no. 12, p. 4369, 2022. https://doi.org/10.3390/s22124369.Suche in Google Scholar PubMed PubMed Central

[139] T. Nakajima, et al.., “Real-time feedback control of charge sensing for quantum dot qubits,” Phys. Rev. Appl., vol. 15, no. 3, p. L031003, 2021. https://doi.org/10.1103/PhysRevApplied.15.L031003.Suche in Google Scholar

[140] X. Chen, Y. Liu, and Q. Ma, “Recent advances in quantum dot-based electrochemiluminescence sensors,” J. Mater. Chem. C, vol. 6, no. 5, pp. 942–959, 2018. https://doi.org/10.1039/C7TC05474B.Suche in Google Scholar

[141] M. H. Gehlen, “The Centenary of the Stern-Volmer Equation of Fluorescence Quenching: from the single line plot to the SV quenching map,” J. Photochem. Photobiol. C Photochem. Rev., vol. 42, p. 100338, 2019. https://doi.org/10.1016/j.jphotochemrev.2019.100338.Suche in Google Scholar

[142] F. H. Dos Santos Rodrigues, G. G. Delgado, T. Santana da Costa, and L. Tasic, “Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts,” BBA Adv., vol. 3, p. 100091, 2023. https://doi.org/10.1016/j.bbadva.2023.100091.Suche in Google Scholar PubMed PubMed Central

[143] H. Lin, J. Huang, and L. Ding, “Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging,” J. Nanomater., vol. 2019, no. 1, p. 5037243, 2019. https://doi.org/10.1155/2019/5037243.Suche in Google Scholar

[144] X. Tan and J. R. Caram, “On the inadequacy of Stern–Volmer and FRET in describing quenching in binary donor–acceptor solutions,” J. Chem. Phys., vol. 158, no. 20, p. 204705, 2023. https://doi.org/10.1063/5.0148170.Suche in Google Scholar PubMed

[145] A. S. Subala, K. V. Anand, and S. A. Sibi, “Quantum dots in waste water treatment - review article,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 5, no. 8, pp. 591–596, 2020, https://doi.org/10.38124/IJISRT20AUG591.Suche in Google Scholar

[146] H. Sutar and C. K. Das, “A review on: bioremediation,” Int. J. Res. Chem. Environ., vol. 2, no. 1, pp. 13–21, 2012. https://doi.org/10.5555/20123317782.Suche in Google Scholar

[147] S. Jing, Y. Zhao, R. C. Sun, L. Zhong, and X. Peng, “Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition,” ACS Sustain. Chem. Eng., vol. 7, no. 8, pp. 7833–7843, 2019. https://doi.org/10.1021/acssuschemeng.9b00027.Suche in Google Scholar

[148] W. Cao, et al.., “Progress on quantum dot photocatalysts for biomass valorization,” Exploration, vol. 3, no. 6, p. 20220169, 2023.10.1002/EXP.20220169Suche in Google Scholar PubMed PubMed Central

[149] F. Ma, C. C. Li, and C. Y. Zhang, “Development of quantum dot-based biosensors: principles and applications,” J. Mater. Chem. B, vol. 6, no. 39, 2018, https://doi.org/10.1039/C8TB01869C.Suche in Google Scholar

[150] O. Levenspiel, “The Monod equation: a revisit and a generalization to product inhibition situations,” Biotechnol. Bioeng., vol. 22, no. 8, pp. 1671–1687, 1980. https://doi.org/10.1002/bit.260220810.Suche in Google Scholar

[151] D. Lopez-Diaz, M. D. Merchán, P. Pérez, and M. M. Velázquez, “N-doped carbon nanoparticles as antibacterial agents on Escherichia coli: the role of the size and chemical composition of nanoparticles,” Coatings, vol. 13, no. 7, p. 1169, 2023. https://doi.org/10.3390/coatings13071169.Suche in Google Scholar

[152] S. Tripathi, R. Sanjeevi, A. Jayaraman, D. S. Chauhan, and A. K. Rathoure, “Nano-bioremediation: nanotechnology and bioremediation,” in Biostimulation Remediation Technologies for Groundwater Contaminants, Hershey, PA, IGI Global, 2018, pp. 202–219.10.4018/978-1-5225-4162-2.ch012Suche in Google Scholar

Received: 2025-05-18
Accepted: 2025-08-22
Published Online: 2025-09-08

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2025-0095/html
Button zum nach oben scrollen