Startseite Critical study of reservoir and hydraulic fracture parameters on cumulative shale gas production – a sensitivity analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Critical study of reservoir and hydraulic fracture parameters on cumulative shale gas production – a sensitivity analysis

  • Pushpa Sharma , Vamsi Krishna Kudapa EMAIL logo , Dharmendra Kumar Gupta und Patchamatla J. Rama Raju
Veröffentlicht/Copyright: 3. April 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Gas production from shale reservoirs is primarily influenced by reservoir matrix and induced fracture properties. This study conducts a detailed sensitivity analysis using the CMG-IMEX simulator to quantify the impact of key parameters on cumulative gas production. The results indicate that increasing matrix porosity from 0.07 to 0.15 enhances cumulative gas production by 30 %, as higher porosity allows for greater gas storage and improved flow connectivity. Similarly, Langmuir volume variation from 80 ft3–197 ft3 results in a 50 % increase in cumulative gas production, while Langmuir pressure between 400 psi and 725 psi leads to a 40 % production improvement, emphasizing the role of adsorption capacity in gas recovery. Hydraulic fracture parameters also significantly impact production. Increasing the number of fractures from one to five optimizes gas production, resulting in a 25 % improvement, though further increases lead to fractured interference and diminishing returns. The optimal fracture width is found to be 0.035 ft, beyond which the pressure gradient weakens, reducing gas production efficiency. Additionally, fracture permeability shows a positive correlation with gas production up to 105 mD, after which multiphase flow effects cause a decline in output. These findings emphasize the necessity of optimizing both reservoir and hydraulic fracture parameters to maximize shale gas recovery efficiently. The study provides critical insights for designing cost-effective hydraulic fracturing operations, ensuring enhanced gas extraction from unconventional reservoirs.


Corresponding author: Vamsi Krishna Kudapa, Energy Cluster, School of Advanced Engineering, UPES, Dehradun, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] Y. Hao, W. Wang, B. Yuan, Y. Su, J. An, and H. Shu, “Shale gas simulation considering natural fractures, gas desorption, and slippage flow effects using conventional modified model,” J. Pet. Explor. Prod. Technol., vol. 8, no. 2, pp. 607–615, 2018. https://doi.org/10.1007/s13202-017-0366-7.Suche in Google Scholar

[2] D. J. K. Ross and R. Marc Bustin, “Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs,” Fuel, vol. 86, nos. 17–18, pp. 2696–2706, 2007. https://doi.org/10.1016/j.fuel.2007.02.036.Suche in Google Scholar

[3] F. Civan, “Effective correlation of apparent gas permeability in tight porous media,” Transp. Porous Media, vol. 82, no. 2, pp. 375–384, 2010. https://doi.org/10.1007/s11242-009-9432-z.Suche in Google Scholar

[4] M. For, F. In, D. A. T. Micro, P. Scroll, and D. For, “Microscale thermophysical engineering report: a model for flows in channels, pipes, and ducts at micro and nano scales,” Microscale Thermophys. Eng., no. 1, pp. 37–41, 2010.Suche in Google Scholar

[5] C. M. Freeman, G. J. Moridis, and T. A. Blasingame, “A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems,” Trans. Porous Media, vol. 90, no. 1, pp. 253–268, 2011. https://doi.org/10.1007/s11242-011-9761-6.Suche in Google Scholar

[6] B. Gong, G. Qin, B. F. Towler, and H. Wang, “Discrete modeling of natural and hydraulic fractures in shale-gas reservoirs,” in Proceedings – SPE Annual Technical Conference and Exhibition, vol. 4, Richardson, Texas, USA, Society of Petroleum Engineers (SPE), 2011, pp. 2869–2877.10.2118/146842-MSSuche in Google Scholar

[7] F. Javadpour, “Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone),” J. Can. Pet. Technol., vol. 48, no. 8, pp. 16–21, 2009. https://doi.org/10.2118/09-08-16-DA.Suche in Google Scholar

[8] C. Niu, Y. Z. Hao, D. L. Li, and D. T. Lu, “Second-order gas-permeability correlation of shale during slip flow,” SPE J., vol. 19, no. 5, pp. 786–792, 2014. https://doi.org/10.2118/168226-PA.Suche in Google Scholar

[9] A. Sakhaee-Pour and S. L. Bryant, “Gas permeability of shale,” SPE Reservoir Eval. Eng., vol. 15, no. 4, pp. 401–409, 2012. https://doi.org/10.2118/146944-PA.Suche in Google Scholar

[10] L. Xue, et al.., “An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network,” Pet. Sci., no. 4, 2024. https://doi.org/10.1016/j.petsci.2024.02.010.Suche in Google Scholar

[11] C. L. Cipolla, E. P. Lolon, J. C. Erdle, and B. Rubin, “Reservoir modeling in shale-gas reservoirs,” SPE Reservoir Eval. Eng., vol. 13, no. 4, pp. 638–653, 2010. https://doi.org/10.2118/125530-PA.Suche in Google Scholar

[12] A. R. Edrisi and S. I. Kam, “A new foam rheology model for shale-gas foam fracturing applications,” in SPE Canadian Unconventional Resources Conference, Richardson, Texas, USA, Society of Petroleum Engineers (SPE), 2012.10.2118/162709-MSSuche in Google Scholar

[13] F. Javadpour, D. Fisher, and M. Unsworth, “Nanoscale gas flow in shale gas sediments,” J. Can. Pet. Technol., vol. 46, no. 10, pp. 55–61, 2007. https://doi.org/10.2118/07-10-06.Suche in Google Scholar

[14] M. Y. Soliman and C. S. Kabir, “Testing unconventional formations,” J. Pet. Sci. Eng., vol. 92–93, no. 1, pp. 102–109, 2012. https://doi.org/10.1016/j.petrol.2012.04.027.Suche in Google Scholar

[15] N. R. Warpinski, M. J. Mayerhofer, M. C. Vincent, C. L. Cipolla, and E. R. Lolon, “Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity,” J. Can. Pet. Technol., vol. 48, no. 10, pp. 39–51, 2009. https://doi.org/10.2118/114173-PA.Suche in Google Scholar

[16] M. J. Kaiser, “Haynesville shale play economic analysis,” J. Pet. Sci. Eng., vol. 82–83, no. 1, pp. 75–89, 2012. https://doi.org/10.1016/j.petrol.2011.12.029.Suche in Google Scholar

[17] A. Kalantari-Dahaghi, “Systematic approach to numerical simulation and modelling of shale gas reservoirs,” Int. J. Oil, Gas Coal Technol., vol. 4, no. 3, pp. 209–243, 2011. https://doi.org/10.1504/IJOGCT.2011.040837.Suche in Google Scholar

[18] B. Meyer, L. Bazan, R. Jacot, and M. Lattibeaudiere, “Optimization of multiple transverse hydraulic fractures in horizontal wellbores,” Onepetro, no. 1, 2010. https://doi.org/10.2523/131732-ms.Suche in Google Scholar

[19] W. Fazelipour, “Development of techniques to integrate hydraulic fracturing design and reservoir simulation technologies - application to forecast production of stimulated wells in unconventional gas reservoirs,” in Society of Petroleum Engineers – SPE Middle East Unconventional Gas Conference and Exhibition 2011, UGAS, Richardson, Texas, USA, Society of Petroleum Engineers (SPE), 2011, pp. 207–220.10.2118/142337-MSSuche in Google Scholar

[20] M. J. Mayerhofer, E. P. Lolon, C. Rightmire, D. Walser, C. L. Cipolla, and N. R. Warplnskl, “What is stimulated reservoir volume?” SPE Prod. Oper., vol. 25, no. 1, pp. 89–98, 2010. https://doi.org/10.2118/119890-PA.Suche in Google Scholar

[21] G. Waters, B. Dean, R. Downie, K. Kerrihard, L. Austbo, and B. McPherson, “Simultaneous hydraulic fracturing of adjacent horizontal wells in the woodford shale,” in Society of Petroleum Engineers – SPE Hydraulic Fracturing Technology Conference 2009, Richardson, Texas, USA, Society of Petroleum Engineers (SPE), 2009, pp. 694–715.10.2118/119635-MSSuche in Google Scholar

[22] Q. Cui, Y. Zhao, L. Zhang, M. Chen, S. Gao, and Z. Chen, “A semianalytical model of fractured horizontal well with hydraulic fracture network in shale gas reservoir for pressure transient analysis,” Adv. Geo-Energy Res., vol. 8, no. 3, pp. 193–205, 2023, https://doi.org/10.46690/ager.2023.06.06.Suche in Google Scholar

[23] D. Hernomita and T. Erfando, and others, “Sensitivity analysis of geomechanics influence on the success of hydraulic fracturing in shale gas reservoir,” J. Geosci., Eng., Environ., Technol., vol. 8, no. 2, pp. 99–104, 2023, https://doi.org/10.25299/jgeet.2023.8.2.12351.Suche in Google Scholar

[24] J. Chen, L. Wang, C. Wang, B. Yao, Y. Tian, and Y. S. Wu, “Automatic fracture optimization for shale gas reservoirs based on gradient descent method and reservoir simulation,” Adv. Geo-Energy Res., vol. 5, no. 2, pp. 191–201, 2021. https://doi.org/10.46690/ager.2021.02.08.Suche in Google Scholar

[25] D. Li, Y. Wang, B. Zeng, Q. Lyu, X. Zhou, and N. Zhang, “Optimization of the shale gas reservoir fracture parameters based on the fully coupled gas flow and effective stress model,” Energy Sci. Eng., vol. 9, no. 5, pp. 676–693, 2021. https://doi.org/10.1002/ese3.852.Suche in Google Scholar

[26] H. Zhang and J. Sheng, “Optimization of horizontal well fracturing in shale gas reservoir based on stimulated reservoir volume,” J. Pet. Sci. Eng., vol. 190, no. February, p. 107059, 2020. https://doi.org/10.1016/j.petrol.2020.107059.Suche in Google Scholar

[27] V. K. Kudapa, S. Kumar, D. K. Gupta, P. Sharma, and R. KunhAbdulla, “Modelling of gas production from shale matrix to fracture network,” in Society of Petroleum Engineers – SPE Intelligent Oil and Gas Symposium 2017, Javadpour 2007, Richardson, Texas, USA, Society of Petroleum Engineers (SPE), 2017.10.2118/187473-MSSuche in Google Scholar

[28] Borisov, Ju.P. Oil Production Using Horizontal and Multiple Deviation Wells, Nedra, Moscow, J. Strauss and S. D. Joshi, Eds., Bartlesville, OK, Phillips Petroleum Co., the R&D LibfaI, Translation, 1964.Suche in Google Scholar

[29] J. Wang, M. Liu, Y. Bentley, L. Feng, and C. Zhang, “Water use for shale gas extraction in the Sichuan Basin, China,” J. Environ. Manag., vol. 226, pp. 13–21, 2018.10.1016/j.jenvman.2018.08.031Suche in Google Scholar PubMed

[30] T. Osholake, J. Y. Wang, and T. Ertekin, “Factors affecting hydraulically fractured well performances in the Marcellus shale gas reservoirs,” Soc. Pet. Eng. – SPE Am. Unconv. Gas Conf. 2011, UGC 2011, vol. 135, no. March, pp. 391–402, 2011. https://doi.org/10.1115/1.4007766.Suche in Google Scholar

Received: 2025-01-10
Accepted: 2025-03-13
Published Online: 2025-04-03

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2025-0007/html
Button zum nach oben scrollen