Startseite Conceptual design of a fixed bed N2O decomposition reactor with a heat pipe heat exchanger
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conceptual design of a fixed bed N2O decomposition reactor with a heat pipe heat exchanger

  • Dong He , Xiaoyue Bai , Hanzhong Tao , Yannan Li EMAIL logo und Shuo Lin
Veröffentlicht/Copyright: 2. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper introduces a novel process for decomposing N2O through interstage cooling utilizing a heat pipe heat exchanger. The reactor design involves segmenting the fixed bed reactor into multiple layers and integrating heat pipe heat exchangers between these layers to efficiently dissipate the high heat generated by the upper fixed bed reactor. This innovative approach facilitates the direct decomposition of N2O feedgas with high concentrations, obviating the need for gas dilution. The study conducted in this paper employed Fluent and ASPEN PLUS to investigate N2O decomposition with interstage cooling using heat pipe heat exchangers, as well as decomposition after dilution. A comparison between the two methods was made based on catalyst dosage, temperature uniformity, and reactor energy consumption. The results demonstrate that the proposed method for N2O decomposition via interstage cooling with a heat pipe heat exchanger is a viable option, offering the desired temperature control and enhanced efficiency. Furthermore, this reactor design effectively reduces both catalyst usage and energy consumption, providing substantial advantages over traditional approaches.


Corresponding author: Yannan Li, College of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China, E-mail:

Acknowledgments

The computational resources generously provided by the High Performance Computing Center of Nanjing Tech University are greatly appreciated.

  1. Research ethics: Not applicable.

  2. Author contributions: The author(s) have (has) accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

[1] K Protocol, Kyoto Protocol. UNFCCC Website, 1997. Available at: http://unfccc.int/kyoto_protocol/items/2830.php Accessed: Jan. 1, 2011.Suche in Google Scholar

[2] M Protocol, Montreal Protocol on Substances that Deplete the Ozone Layer, vol. 26, Washington, DC, US Government Printing Office, 1987, pp. 128–136.Suche in Google Scholar

[3] Y. Yung, W. Wang, and A. Lacis, “Greenhouse effect due to atmospheric nitrous oxide,” Geophys. Res. Lett., vol. 3, no. 10, pp. 619–621, 1976, https://doi.org/10.1029/gl003i010p00619.Suche in Google Scholar

[4] A. Shimizu, K. Tanaka, and M. Fujimori, “Abatement technologies for N2O emissions in the adipic acid industry,” Chemosphere Global Change Sci., vol. 2, nos. 3–4, pp. 425–434, 2000, https://doi.org/10.1016/s1465-9972(00)00024-6.Suche in Google Scholar

[5] J. Pérez-Ramı́rez, F. Kapteijn, G. Mul, X. Xu, and J. A. Moulijn, “Ex-framework FeZSM-5 for control of N2O in tail-gases,” Catal. Today, vol. 76, no. 1, pp. 55–74, 2002, https://doi.org/10.1016/s0920-5861(02)00208-0.Suche in Google Scholar

[6] J. Pérez-Ramırez, F. Kapteijn, K. Schöffel, and J. Moulijn, “Formation and control of N2O in nitric acid production: where do we stand today?,” Appl. Catal. B Environ., vol. 44, no. 2, pp. 117–151, 2003, https://doi.org/10.1016/s0926-3373(03)00026-2.Suche in Google Scholar

[7] R. M. Heck, “Catalytic abatement of nitrogen oxides–stationary applications,” Catal. Today, vol. 53, no. 4, pp. 519–523, 1999, https://doi.org/10.1016/s0920-5861(99)00139-x.Suche in Google Scholar

[8] G. E. Marnellos, E. A. Efthimiadis, and I. A. Vasalos, “Simultaneous catalytic reduction of NOX and N2O in an In/Al2O3–Ru/Al2O3 dual-bed reactor in the presence of SO2 and H2O,” Ind. Eng. Chem. Res., vol. 43, no. 10, pp. 2413–2419, 2004, https://doi.org/10.1021/ie030596+.10.1021/ie030596+Suche in Google Scholar

[9] F. Kapteijn, J. Rodriguez-Mirasol, and J. A. Moulijn, “Heterogeneous catalytic decomposition of nitrous oxide,” Appl. Catal. B Environ., vol. 9, nos. 1–4, pp. 25–64, 1996, https://doi.org/10.1016/0926-3373(96)00016-1.Suche in Google Scholar

[10] S. Brandenberger, O. Kröcher, A. Tissler, and R. Althoff, “The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts,” Catal. Rev., vol. 50, no. 4, pp. 492–531, 2008, https://doi.org/10.1080/01614940802480122.Suche in Google Scholar

[11] R. Van den Brink, S. Booneveld, J. Pels, D. Bakker, and M. Verhaak, “Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite,” Appl. Catal. B Environ., vol. 32, nos. 1–2, pp. 73–81, 2001, https://doi.org/10.1016/s0926-3373(00)00294-0.Suche in Google Scholar

[12] P PREChTL, Study of N2O Decomposition Over Fe-ZSM-5 With Transient Methods, Lausanne, EPFL, 2007.Suche in Google Scholar

[13] M. Konsolakis, “Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects,” ACS Catal., vol. 5, no. 11, pp. 6397–6421, 2015, https://doi.org/10.1021/acscatal.5b01605.Suche in Google Scholar

[14] D. Sun and D. S. A. Simakov, “Thermal management of a Sabatier reactor for CO2 conversion into CH4: Simulation-based analysis,” J. CO2 Util., vol. 21, no. 07, pp. 368–382, 2017. https://doi.org/10.1016/j.jcou.2017.07.015.Suche in Google Scholar

[15] F. Rosner, A. Rao, and S. Samuelsen, “Water gas shift reactor modelling and new dimensionless number for thermal management/design of isothermal reactors,” Appl. Therm. Eng., vol. 173, no. 8, 2020, Art. no. 115033, https://doi.org/10.1016/j.applthermaleng.2020.115033.Suche in Google Scholar

[16] A. Chaudhary and S. Sahoo, “Thermal management and optimization of the reactor geometry for adsorbed natural gas storage systems subjected to free convection and radiative environment,” Gas Sci. Eng., vol. 109, 2023, Art. no. 104851, https://doi.org/10.1016/j.jngse.2022.104851.Suche in Google Scholar

[17] Y. Xiong, et al.., “Potassium promoted Gd0.06Co catalysts for highly efficient catalytic N2O decomposition in presence of impurity gases at low temperature,” Chemosphere, vol. 303, 2022, Art. no. 135257, https://doi.org/10.1016/j.chemosphere.2022.135257.Suche in Google Scholar PubMed

[18] Y. Xiong, et al.., “Strong structural modification of Gd to Co3O4 for catalyzing N2O decomposition under simulated real tail gases,” Environ. Sci. Technol., vol. 55, no. 19, pp. 13335–13344, 2021, https://doi.org/10.1021/acs.est.1c05052.Suche in Google Scholar PubMed

[19] J. Cheng, et al.., “N2O catalytic decomposition and NH3-SCR coupling reactions over Fe-SSZ-13 catalyst: mechanisms and interactions unraveling via experiments and DFT calculations,” ACS Catal., vol. 13, no. 2, pp. 934–947, 2022, https://doi.org/10.1021/acscatal.2c04747.Suche in Google Scholar

[20] T. Andana, Y. Wu, J. Szanyi, Y. Wang, and F. Gao, “Catalytic site requirements for N2O decomposition on Cu−, Co−, and Fe-SSZ-13 zeolites,” J. Catal., vol. 401, no. 07, pp. 70–80, 2021. https://doi.org/10.1016/j.jcat.2021.07.012.Suche in Google Scholar

[21] Y. Jing, et al.., “Catalytic decomposition of N2O in the presence of O2 through redox of Rh oxide in a RhOx/ZrO2 catalyst,” ACS Catal., vol. 12, no. 11, pp. 6325–6333, 2022, https://doi.org/10.1021/acscatal.2c01321.Suche in Google Scholar

[22] J. Sun, et al.., “Taming the redox property of A0.5Co2.5O4 (A= Mg, Ca, Sr, Ba) toward high catalytic activity for N2O decomposition,” ACS Appl. Energy Mater., vol. 4, no. 8, pp. 8496–8505, 2021, https://doi.org/10.1021/acsaem.1c01690.Suche in Google Scholar

[23] M. Miao, M. Zhang, H. Kong, T. Zhou, X. Yang, and H. Yang, “Progress in catalytic decomposition and removal of N2O in fluidized bed,” Energies, vol. 14, no. 19, p. 6148, 2021, https://doi.org/10.3390/en14196148.Suche in Google Scholar

[24] A. Wang, et al., “Catalytic N2O decomposition and reduction by NH3 over Fe/beta and Fe/SSZ-13 catalysts,” J. Catal., vol. 358, no. 12, pp. 199–210, 2018. https://doi.org/10.1016/j.jcat.2017.12.011.Suche in Google Scholar

[25] G. A. Melhem, R. Saini, and B. M. Goodwin, “A modified Peng-Robinson equation of state,” Fluid Phase Equilib., vol. 47, nos. 2–3, pp. 189–237, 1989, https://doi.org/10.1016/0378-3812(89)80176-1.Suche in Google Scholar

[26] R. Peretz and B. Horbaniuc, “Optimal heat pipe heat exchanger design,” J. Heat Recovery Syst., vol. 4, no. 1, pp. 9–24, 1984, https://doi.org/10.1016/0198-7593(84)90088-2.Suche in Google Scholar

[27] A. A. El-Nasr and S. M. El-Haggar, “Effective thermal conductivity of heat pipes,” Heat Mass Tran., vol. 32, nos. 1–2, pp. 97–101, 1996, https://doi.org/10.1007/s002310050097.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/j_ijcre-2023-0227).


Received: 2023-12-06
Accepted: 2024-03-16
Published Online: 2024-04-02

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2023-0227/html
Button zum nach oben scrollen