Startseite Role of Support in Hydrocracking of n-hexadecane over Sulfided NiMo Catalysts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Role of Support in Hydrocracking of n-hexadecane over Sulfided NiMo Catalysts

  • Behzad Zanjani Nejed , Ahmad Tavasoli EMAIL logo , Ali Karimi und Farideh Atabi
Veröffentlicht/Copyright: 26. Juli 2019

Abstract

The graphene nanosheets (GNS) have been considered as a support for the synthesis of catalysts applied in various catalytic reactions. In this research, the hydrocracking (HCK) of n-hexadecane as a model component of the long chain paraffin was carried out using synthesized Ni-Mo/GNS and commercial Ni-Mo/Al2O3-SiO2 catalysts in a fixed-bed reactor. The physico-chemical properties of catalysts were determined using XRF, TEM, XRD, TGA and NH3-TPD analysis. The effect of support on the conversion and product distribution in HCK of n-hexadecane was investigated. The stability of the catalysts in the presence of water and coke deposition was examined for the HCK of nonconventional feeds. The obtained results revealed that the active metals were anchored on the functionalized GNS and the stability of Ni-Mo/GNS was significantly increased compared to commercial catalyst. The obtained results indicated that the GNS-supported catalysts have a higher potential for HCK of n-hexadecane in comparison to commercial Ni-Mo/ Al2O3-SiO2 catalysts.

References

Abotsi, Godfried M. K., and Alan W. Scaroni. 1989. “A Review of Carbon-Supported Hydrodesulfurization Catalysts.” Fuel Processing Technology 22 (2): 107–33.10.1016/0378-3820(89)90028-3Suche in Google Scholar

Ajumobi, O. O., O. Muraza, Kondoh, N. Hasegawa, Y. Nakasaka, T. Yoshikawa, A. M. Al Amer, and T. Masuda. 2018. “Upgrading Oil Sand Bitumen under Superheated Steam over Ceria-Based Nanocomposite Catalysts.” Applied Energy 218: 1–9.10.1016/j.apenergy.2018.02.161Suche in Google Scholar

Al-Daous, M. A. 2015. “Graphene–MoS2 Composite: Hydrothermal Synthesis and Catalytic Property in Hydrodesulfurization of Dibenzothiophene.” Catalysis Communications 72: 180–84.10.1016/j.catcom.2015.09.030Suche in Google Scholar

Ali, M. A., and S. Asaoka. 2009. “Ni-Mo-Titania-Alumina Catalysts with USY Zeolite for Low Pressure Hydrodesulfurization and Hydrocracking Ni-Mo-Titania-Alumina Catalysts with USY Zeolite for Low Pressure Hydrodesulfurization and Hydrocracking.” Petroleum Science and Technology 27 (10): 1–14.Suche in Google Scholar

Bedia J., R. Barrionuevo, J. Rodríguez-Mirasol, and T. Cordero. 2011. “Ethanol dehydration to ethylene on acid carbon catalysts.” Applied Catalysis B: Environmental 103: 302–10.10.1016/j.apcatb.2011.01.032Suche in Google Scholar

Breysse, Michele, Pavel Afanasiev, Christophe Geantet, and Michel Vrinat. 2003. “Overview of Support Effects in Hydrotreating Catalysts.” Catalysis Today 86 (1): 5–16.10.1016/S0920-5861(03)00400-0Suche in Google Scholar

Castille, A., C. Bessette, F. Thomas, and M. Etemad. 2019. “Sustainable Hydrocarbon Production via Simultaneous Condensation-Hydrodeoxygenation of Propionic Acid with Furfural over Red Mud-Supported Noble Metal Catalysts.” Catalysis Communications 12: 5–10.10.1016/j.catcom.2018.11.015Suche in Google Scholar

Cauzzi, D., M. Deltratti, G. Predieri, A. Tiripicchio, A. Kaddouri, C. Mazzocchia, E. Tempesti, A. Armigliato, and C. Vignalid. 1999. “Synthesis of MMoO4/SiO2 Catalysts (M = Ni or Co) by a Sol–Gel Route via Silicon Alkoxides: Stabilization of β-NiMoO4 at Room Temperature.” Applied Catalysis A: General 182 (1): 125–35.10.1016/S0926-860X(98)00359-7Suche in Google Scholar

Elliott, D. C., H. Wang, R. French, S. Deutch, and K. Iisa. 2014. “Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-Oil.” Energy & Fuels 28 (9): 5909–17.10.1021/ef501536jSuche in Google Scholar

Fampiou, I., and A. Ramasubramaniam. 2015. “Influence of Support Effects on CO Oxidation Kinetics on CO-saturated Graphene-Supported Pt13 Nanoclusters.” The Journal of Physical Chemistry C 119: 8703–10.10.1021/acs.jpcc.5b00029Suche in Google Scholar

Fréty, R., Maria da Graça C. da Rocha, Soraia T. Brandão, Luiz A. M. Pontes, Jose F. Padilha, Luiz E. P. Borges, and Wilma A. Gonzalez. 2011. “Cracking and Hydrocracking of Triglycerides for Renewable Liquid Fuels: Alternative Processes to Transesterification.” Journal of the Brazilian Chemical Society 22 (7): 1206–20.10.1590/S0103-50532011000700003Suche in Google Scholar

Hita, I., T. Cordero-Lanzac, A. Gallardo, J. M. Arandes, J. Rodríguez-Mirasol, J. Bilbao, T. Cordero, and P. Castaño. 2016. “Phosphorus-Containing Activated Carbon as Acid Support in a Bifunctional Pt–Pd Catalyst for Tire Oil Hydrocracking.” Catalysis Communications 78: 48–51.10.1016/j.catcom.2016.01.035Suche in Google Scholar

Jahromi, H., and F. A. Agblevor. 2018. “Hydrodeoxygenation of Aqueous-Phase Catalytic Pyrolysis Oil to Liquid Hydrocarbons Using Multifunctional Nickel Catalyst.” Industrial & Engineering Chemistry Research 57 (39): 13257–68.10.1021/acs.iecr.8b02807Suche in Google Scholar

Juarez, E. Mar, F. J. Ortega Garcia, and P. Schacht Hernandez. 2014. “Hydrocracking of Vacuum Residue by Homogeneous Catalysis.” Fuel 135: 51–54.10.1016/j.fuel.2014.05.070Suche in Google Scholar

Kaminski, T., Q. Sheng, and M. M. Husein. 2019. “Hydrocracking of Athabasca Vacuum Residue Using Ni-Mo-Supported Drill Cuttings.” Catalysts 9 (3): 216.10.3390/catal9030216Suche in Google Scholar

Khosravi, A., M. Salimi Bani, H. Bahreinizade, and A. Karimi. 2016. “A computational fluid–structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta.” Bioscience Reports 36 (6).10.1042/BSR20160468Suche in Google Scholar PubMed PubMed Central

Kim, C. H., Y. G. Hur, S. H. Lee, and K. Y. Lee. 2018. “Hydrocracking of Vacuum Residue Using Nano-Dispersed Tungsten Carbide Catalyst.” Fuel 233: 200–06.10.1016/j.fuel.2018.05.091Suche in Google Scholar

Landau, R. N., S. C. Korre, M. Neurock, M. T. Klein, and R. J. Quann. 1992. “Hydrocracking of Heavy Oils: Development of Structure/Reactivity Correlations for Kinetics.” American Chemical Society Division of Fuel Chemistry Preprints of Papers 37 (4): 1871.Suche in Google Scholar

Leyva, C., J. Ancheytaa, A. Travert, F. Maugé, L. Mariey, J. Ramírezc, and S. R. Mohan. 2012. “Activity and Surface Properties of NiMo/SiO2–Al2O3 Catalysts for Hydroprocessing of Heavy Oils.” Applied Catalysis A: General 425–26: 1–12.10.1016/j.apcata.2012.02.033Suche in Google Scholar

Liu, G. H., Z. M. Zong, Z. Q. Liu, F. J. Liu, Y. Y. Zhang, and X. Y. Wei. 2018. “Solvent-Controlled Selective Hydrodeoxygenation of Bio-Derived Guaiacol to Arenes or Phenols over a Biochar Supported Co-Doped MoO2 Catalyst.” Fuel Processing Technology 179: 114–23.10.1016/j.fuproc.2018.05.035Suche in Google Scholar

Liu, Z. Q., X. Y. Wei, H. H. Wu, W. T. Li, Y. Y. Zhang, Z. M. Zong, F. Y. Ma, and J. M. Liu. 2017. “Difunctional Nickel/Microfiber Attapulgite Modified with an Acidic Ionic Liquid for Catalytic Hydroconversion of Lignite-Related Model Compounds.” Fuel 204: 236–42.10.1016/j.fuel.2017.05.039Suche in Google Scholar

Looi, Phaik Yee, Abdul Rahman Mohamed, and Ching Thian Tye. 2012. “Hydrocracking of Residual Oil Using Molybdenum Supported over Mesoporous Alumina as a Catalyst.” Chemical Engineering Journal 181–182: 717–24.10.1016/j.cej.2011.12.080Suche in Google Scholar

López, D., L. J. Giraldo, J. P. Salazar, D. M. Zapata, D. C. Ortega, C. A. Franco, and F. B. Cortés. 2017. “Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading.” Catalysts 7 (11): 319.10.3390/catal7110319Suche in Google Scholar

Massoth, F. E. 1979. “Characterization of Molybdena Catalysts,” In Advances in Catalysis, vol. 27, 265– 310. Elsevier. DOI: https://doi.org/10.1016/S0360-0564(08)60058-9.Suche in Google Scholar

McAllister, M. J., J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, et al. 2007. “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite.” Chemistry of Materials 19 (18): 4396–404.10.1021/cm0630800Suche in Google Scholar

Menoufy, M. F., H. S. Ahmed, M. A. Betiha, and M. A. Sayed. 2014. “A Comparative Study on Hydrocracking and Hydrovisbreaking Combination for Heavy Vacuum Residue Conversion.” Fuel 119: 106–10.10.1016/j.fuel.2013.11.017Suche in Google Scholar

Moussa, S. O., L. S. Panchakarla, M. Q. Ho, and M. S. El-Shall. 2014. “Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes.” ACS Catalysis 4 (2): 535–45.10.1021/cs4010198Suche in Google Scholar

Panariti, N., A. Del Bianco, G. Del Piero, and M. Marchionna. 2000. “Petroleum Residue Upgrading with Dispersed Catalysts: Part 1. Catalysts Activity and Selectivity.” Applied Catalysis A: General 204 (2): 203–13.10.1016/S0926-860X(00)00531-7Suche in Google Scholar

Pawelec, B., R. Mariscal, J. L. G. Fierro, A. Greenwood, and P. T. Vasudevan. 2001. “Carbon-Supported Tungsten and Nickel Catalysts for Hydrodesulfurization and Hydrogenation Reactions.” Applied Catalysis A: General 206 (2): 295–307.10.1016/S0926-860X(00)00605-0Suche in Google Scholar

Pinilla, J. L., H. Purón, D. Torres, S. De Llobet, R. Moliner, I. Suelves, and M. Millan. 2014. “Carbon Nanofibres Coated with Ni Decorated MoS 2 Nanosheets as Catalyst for Vacuum Residue Hydroprocessing.” Applied Catalysis B: Environmental 148–149: 357–65.10.1016/j.apcatb.2013.11.019Suche in Google Scholar

Rodriguez-Reinoso, F., and M. Molina-Sabio. 1992. “Activated Carbons from Lignocellulosic Materials by Chemical And/Or Physical Activation: An Overview.” Carbon 30 (7): 1111–18.10.1016/0008-6223(92)90143-KSuche in Google Scholar

Rodriguez-Reinoso, Francisco. 1998. “The Role of Carbon Materials in Heterogeneous Catalysis.” Carbon 36 (3): 159–75.10.1016/S0008-6223(97)00173-5Suche in Google Scholar

Sahu, R., B. J. Song, J. S. Im, Y. P. Jeon, and C. W. Lee. 2015. “A Review of Recent Advances in Catalytic Hydrocracking of Heavy Residues.” Journal of Industrial and Engineering Chemistry 27: 12–24.10.1016/j.jiec.2015.01.011Suche in Google Scholar

Shervedani, R. K., and A. Amini. 2015. “Sulfur-Doped Graphene as a Catalyst Support: Influences of Carbon Black and Ruthenium Nanoparticles on the Hydrogen Evolution Reaction Performance.” Carbon 93: 762–73.10.1016/j.carbon.2015.05.088Suche in Google Scholar

Sun, H., L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, et al. 2017. “Three-Dimensional Holey-Graphene/Niobia Composite Architectures for Ultrahigh-Rate Energy Storage.” Science 356 (6338): 599–604.10.1126/science.aam5852Suche in Google Scholar PubMed

Tavasoli, Ahmad, Mohammad Barati, and Ali Karimi. 2015. “Conversion of Sugarcane Bagasse to Gaseous and Liquid Fuels in Near-Critical Water Media Using K2O Promoted Cu/γ-Al2O3–MgO Nanocatalysts.” Biomass and Bioenergy 80: 63–72.10.1016/j.biombioe.2015.04.031Suche in Google Scholar

Tayeb, B. K., C. Lamonier, C. Lancelot, M. Fournier, A. Bonduelle-Skrzypczak, and F. Fabrice Bertoncini. 2012. “Active Phase Genesis of NiW Hydrocracking Catalysts Based on Nickel Salt Heteropolytungstate: Comparison with Reference Catalyst.” Applied Catalysis B: Environmental 126: 55–63.10.1016/j.apcatb.2012.06.025Suche in Google Scholar

U.S. Energy Information Administration. 2003. “Annual Energy Outlook 2003 with Projections to 2025.” Energy Information Administration 0383 (January): 1–263.Suche in Google Scholar

Wang, X., W. Xu, N. Liu, Z. Yu, Y. Li, and J. Qiu. 2015. “Synthesis of Metallic Ni-Co/graphene Catalysts with Enhanced Hydrodesulfurization Activity via a Low-Temperature Plasma Approach.” Catalysis Today 256: 203–208.10.1016/j.cattod.2015.04.026Suche in Google Scholar

Yang, L., X. Z. Wang, Y. Liu, Z. F. Yu, J. J. Liang, B. B. Chen, C. Shi, S. Tian, X. Li, and J. S. Qiu. 2017. “Monolayer MoS2 Anchored on Reduced Graphene Oxide Nanosheets for Efficient Hydrodesulfurization.” Applied Catalysis B: Environmental 200: 211–21.10.1016/j.apcatb.2016.07.006Suche in Google Scholar

Zhang, Zhan-Guo, and Tadashi Yoshida. 2001. “Behavior of Hydrogen Transfer in the Hydrogenation of Anthracene over Activated Carbon.” Energy & Fuels 15 (3): 708–13.10.1021/ef000253dSuche in Google Scholar

Received: 2018-08-03
Revised: 2019-04-18
Accepted: 2019-05-25
Published Online: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2018-0200/html
Button zum nach oben scrollen