Home Effects of CaO on the Yield and Thermal Properties of PANI Nanofibers
Article
Licensed
Unlicensed Requires Authentication

Effects of CaO on the Yield and Thermal Properties of PANI Nanofibers

  • Mohammad Mizanur Rahman Khan EMAIL logo , Yee Keat Wee , Saif Uddin Ahmed , Masnun Naher , Muhammad Younus and Wan Ahmad Kamil Mahmood
Published/Copyright: July 27, 2017

Abstract

The control of thermal stability of polyaniline (PANI) nanofibers is reported by systematically varying the loadings of CaO in the range from 0.005 g to 1.0 g. It was found to gradually increase the yield of synthesized PANI nanofibers with the increase of CaO addition. The highest yield, 1.103 g was obtained for 1.00 g loading of CaO. The incorporation of CaO into PANI matrix was revealed by energy-dispersive X-ray spectroscopy (EDX). Thermogravimetric analysis (TGA) data showed that the thermal stability of PANI nanofibers was greatly improved when CaO was added to the system. 1.00 g loading of CaO is favorable to obtain comparatively more thermally stable PANI. The degradation of PANI chains started at 330 °C for the PANI-CaO composites obtained at 1.00 g CaO addition, which is the highest temperature compared to PANI and the samples synthesized at other amount of CaO loadings. Furthermore, the increasing trend of thermal stability was observed with the increasing of CaO loading.

References

Ansari, R., and M. B. Keivani. 2006. “Polyaniline Conducting Electroactive Polymers: Thermal and Environmental Stability Studies.” Eur. J. Chem. 3: 202–217.10.1155/2006/395391Search in Google Scholar

Aphesteguy, J. C., and S. E. Jacobo. 2004. “Composite of Polyaniline Containing Iron Oxides.” Physica B. 354: 224–227.10.1016/j.physb.2004.09.053Search in Google Scholar

Arasi, A. Y., J. J. L. Feyakumari, B. Sundaresan, V. Dhanalakshmi, and R. Anbarasan. 2011. “Synthesis and Characterizations of Poly (Aniline)/Sb2o3 Nano Composite.” J. Chilean Chem. Soc. 56: 635–640.10.4067/S0717-97072011000200002Search in Google Scholar

Bunker, B. C., P. C. Rieke, B. J. Tavasevich, A. A. Cambell, G. E. Gryxell, G. L. Graff, L. Song, J. Liu, J. W. Virden, and G. L. Mcvay. 1994. “Ceramic Thin-Film Formation on Functionalized Interfaces through Biomimetic Processing.” Science 264: 48–55.10.1126/science.264.5155.48Search in Google Scholar PubMed

Chen, Z., C.D. Pina, E. Falletta, M.L. Faro, M. Pasta, M. Rossi, and N. Santo. 2008. “Facile Synthesis of Polyaniline Using Gold Catalyst.” J. Catal. 259: 1–4.10.1016/j.jcat.2008.07.006Search in Google Scholar

Cortes, M. T., and E. V. Sierra. 2006. “Effect of Synthesis Parameters in Polyaniline: Influence on Yield and Thermal Behavior.” Polym. Bullet. 56: 37–45.10.1007/s00289-005-0467-1Search in Google Scholar

Gemeay, A. H., R. G. El-Sharkawy, I. A. Mansour, and A. B. Zaki. 2007. “Preparation and Characterization of Polyaniline/Manganese Dioxide Composites and Their Catalytic Activity.” J. Coll. Interf. Sci. 308: 385–394.10.1016/j.jcis.2006.12.077Search in Google Scholar PubMed

Griesser, T., S. V. Radl, T. Koepplmayr, A. Wolfberger, M. Edler, A. Pavitschitz, et al. 2012. “UV-induced Modulation of the Conductivity of Polyaniline: Towards a Photo-Patternable Charge Injection Layer for Structured Organic Light Emitting Diodes.” J. Mater. Chem. 22: 2922–2928.10.1039/C1JM14100GSearch in Google Scholar

Gu, H. B., Y. D. Huang, X. Zhang, Q. Wang, J. H. Zhu, L. Shao, N. Haldolaarachige, D. P. Young, S. Y. Wei, and Z. H. Guo. 2012. “Magnetoresistive Polyaniline-Magnetite Nanocomposites with Negative Dielectrical Properties.” Polymers. 53: 801–809.10.1016/j.polymer.2011.12.033Search in Google Scholar

Joo, J., Y. Lee, H. G. Song, J. W. Kim, K. S. Jang, E. J. Oh, and A. J. Epstein. 1998. “Enhancement of Electromagnetic Interference Shielding Efficiency of Polyaniline through Mixture and Chemical Doping.” Molecul. Cryst. Liq. Crys. 316: 367–370.10.1080/10587259808044529Search in Google Scholar

Kim, B. H., W. G. Hong, S. M. Lee, Y. J. Yun, H. Y. Yu, S. Y. Oh, and C. H. Kim. 2010 Hydro. Energ. 35: 1300–1304.10.1016/j.ijhydene.2009.11.089Search in Google Scholar

Li, X. W., X. H. Li, N. Dai, G. C. Wang, and Z. Wang. 2010. “Preparation and Electrochemical Capacitance Performances of Super-Hydrophilic Conducting Polyaniline.” J. Power Sources. 195: 5417–5421.10.1016/j.jpowsour.2010.03.034Search in Google Scholar

Liang, L., J. Liu, C. F. Windisch, G. J. Exarhos, and Y. Lin. 2002. “Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires.” Angew. Chem. Int. Edit. 41: 3665–3668.10.1002/1521-3773(20021004)41:19<3665::AID-ANIE3665>3.0.CO;2-BSearch in Google Scholar

Ma, Y., J. Zhang, G. Zhang, and H. He. 2004. “Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates.” J. Am. Chem. Soc. 126: 7097–7101.10.1021/ja039621tSearch in Google Scholar

MacDiarmid, A.G. 2001. “Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates.” Angew. Chem. Int. Ed. 40: 2581–2590.10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2Search in Google Scholar

Mahesh, D. B., D. Raghunandan, S. Basavaraj, and A. Venkataraman. 2012. “Preparation and Characterization of polyaniline-Co3O4 Nanocomposites via Interfacial Polymerization.” Am. J. Mater. Sci. 2: 39–43.10.5923/j.materials.20120203.01Search in Google Scholar

Mahmood, W.A. K., M. M. Rahman Khan, Y. G. Yeow, and Y. K. Wee. 2012. “Effects of Preparation Approaches and Oxidizing Agents on the Yield, Morphology and Thermal Stability of Polyaniline.” Int. J. Chem. React. Eng. 10: 87.10.1515/1542-6580.3125Search in Google Scholar

Mallikarjuna, N. N., S. K. Manohar, P. V. Kulkarni, A. Venkataraman, and T. M. Aminabhavi. 2005. “Novel High Dielectric Constant Nanocomposites of Polyaniline Dispersed with Γ-Fe2o3 Nanoparticles.” J. Appl. Polym. Sci. 97: 1868–1874.10.1002/app.21405Search in Google Scholar

Nabid, M.R., M. Golbabaee, A. B. Moghaddam, R. Dinarvand, and R. Sedghi. 2008. “Polyaniline/TiO2 Nanocomposite: Enzymatic Synthesis and Electrochemical Properties.” Int. J. Electrochem. Sci. 3: 1117.Search in Google Scholar

Ozkazanc, E., S. Zor, and H. Ozkazanc. 2012. “Synthesis, Characterization, and AC Conductivity of Polyaniline/Selenium Composites.” J. Macromol. Sci. Part B: Physics. 51: 2122–2132.10.1080/00222348.2012.664451Search in Google Scholar

Qi, Y. N., F. Xu, and L. X. Sun. 2008. “Thermal Stability and Glass Transition Behavior of PANI/MWNT Composites.” J. Therm. Anal. 94: 137–141.10.1007/s10973-008-8978-2Search in Google Scholar

Rahman Khan, M. M., Y. K. Wee, and W. A. K. Mahmood. 2012. “Effects of CuO on the Morphology and Conducting Properties of PANI Nanofibers.” Synth. Met. 162: 1065–1072.10.1016/j.synthmet.2012.05.009Search in Google Scholar

Rahman Khan, M. M., Y. K. Wee, and W. A. K. Mahmood. 2014. “Effect of CuO on the Thermal Stability of Polyaniline Nanofibers.” Int. J. Chem. React. Eng. 12: 1–7.10.1515/ijcre-2013-0006Search in Google Scholar

Rahman Khan, M. M., Y. K. Wee, and W. A. K. Mahmood. 2015. “Synthesis of PANI-CaO Composite Nanofibers with Controllable Diameter and Electrical Conductivity.” Polym. Compos. 36: 359–365.10.1002/pc.22950Search in Google Scholar

Rahy, A., M. Sakrout, S. Manohar, S. J. Cho, J. Ferrari, and D. J. Yang. 2008. “Polyaniline Nanofiber Synthesis by Co-Use of Ammonium Peroxydisulfate and Sodium Hypochlorite.” Chem. Mater. 20: 4808–4814.10.1021/cm703678mSearch in Google Scholar

Sinha, S., S. Bhadra, and D. Khastgir. 2009. “Effect of Dopant Type on the Properties of Polyaniline.” J. Appl. Polym. Sci. 112: 3135–3140.10.1002/app.29708Search in Google Scholar

Ucar, N., N. Kizildag, A. Onen, I. Karacan, and O. Eren. 2015 Fibers and Polymers 16: 2223.10.1007/s12221-015-5426-3Search in Google Scholar

Virji, S., J. Huang, R. B. Kaner, and B. H. Weiller. 2004. “Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms.” Nano Lett. 4: 491–496.10.1021/nl035122eSearch in Google Scholar

Wang, S., Z. Tan, Y. Li, L. Sun, and T. Zhang. 2006. “Synthesis, Characterization and Thermal Analysis of polyaniline/ZrO2 Composites.” Thermichim. Acta. 441: 191–194.10.1016/j.tca.2005.05.020Search in Google Scholar

Wang, W., Q. Li, Y. Li, H. Xu, and J.P. Zhai. 2009. “Electroless Ag Coating of Fly Ash Cenospheres Using Polyaniline Activator.” Journal Physical D: Applications Physical 42: 215306.10.1088/0022-3727/42/21/215306Search in Google Scholar

Xia, H., and Q. Wang. 2002. “Ultrasonic Irradiation: A Novel Approach to Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites.” Chem. Mater. 14: 2158–2165.10.1021/cm0109591Search in Google Scholar

Zhang, K. Q., and X. L. Jing. 2009. “Preparation and Characterization of Polyaniline with High Electrical Conductivity.” Polym. Adv.Technol. 20: 689–695.10.1002/pat.1333Search in Google Scholar

Zhu, J. H., S. Y. Wei, L. Zhang, Y. B. Mao, J. G. Ryu, A. B. Karki, D. P. Young, and Z. H. Guo. 2011. “Polyaniline Tungsten Oxide Metacomposites with Tunable Electronic Properties.” J. Mater. Chem. 21: 342–348.10.1039/C0JM02090GSearch in Google Scholar

Published Online: 2017-7-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2016-0199/pdf
Scroll to top button